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Welcome to the first Summer School hosted by the NSF Institute for 
Artificial Intelligence and Fundamental Interactions (IAIFI)! 

The mission of the IAIFI PhD Summer School is to leverage the expertise of IAIFI 
researchers, affiliates, and partners toward promoting education and workforce 

development by illustrating interdisciplinary research at the intersection AI and Physics. 

About IAIFI 
 

The NSF AI Institute for Artificial Intelligence and 
Fundamental Interactions (IAIFI, pronounced /aɪ-faɪ/) 
is one of the inaugural NSF AI research institutes. The 
IAIFI is enabling physics discoveries and advancing 
foundational AI through the development of novel AI 
approaches that incorporate first principles, best 
practices, and domain knowledge from fundamental 
physics (ab initio AI).  
 
The IAIFI's primary goals are to: conduct cutting-edge research; promote training, 
education, and outreach at the physics/AI intersection; cultivate early-career talent; 
foster connections to physics facilities and industry; build strong multidisciplinary 
collaborations; and advocate for shared solutions across subfields. In pursuing these 
goals, the IAIFI is working toward advancing physics knowledge---from the smallest 
building blocks of nature to the largest structures in the Universe---and galvanizing AI 
research innovation. 

Financial Support for the Summer School 
 
The Summer School is funded primarily by support from the National Science 
Foundation under Cooperative Agreement PHY-2019786. 
 
Thank you to DeepMind and Unlearn for additional financial support for the Summer 
School. 
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Who we are 
 
The IAIFI is a collaboration of both physics and AI researchers at MIT, Harvard, 
Northeastern, and Tufts.  
 
 

 
 

 

Get Involved 
• Apply to be an IAIFI Fellow: https://iaifi.org/fellows.html

• Attend IAIFI Colloquia: https://iaifi/.org/events.html 

• Watch past Colloquia on YouTube: 
https://www.youtube.com/IAIFIInstituteforAIFundamentalInteractions

 

Management 
 
IAIFI Director: Jesse Thaler, Professor, 
MIT 
IAIFI Deputy Director: Mike Williams, 
Associate Professor, MIT 
IAIFI Project Manager: Marisa LaFleur 
 
 

 
 
 

 

Summer School Committee 
 
Chair: Jim Halverson, Associate 
Professor, Northeastern 
Project Manager: Marisa LaFleur 
Tess Smidt, Assistant Professor, MIT 
Taritree Wongjirad, Assistant Professor, 
Tufts 
Anna Golubeva, IAIFI Fellow 
Jeffrey Lazar, Grad Student, Harvard  
Peter Lu, Grad Student, MIT 
Dylan Rankin, Postdoc, MIT

 
Have a question? Look for us in the purple shirts! 

 
 

 
 https://iaifi.org   iaifi@mit.edu @iaifi-news        IAIFI 
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IAIFI Code of Conduct 

Regardless of their position or seniority, members of the IAIFI and participants in IAIFI 
activities are expected to: 

• Act in an ethical and collaborative manner at all times and abide by the MIT 
Physics Community Values (https://physics.mit.edu/about-physics/community-
values/)  

• Work with the utmost scientific integrity and respect the confidentiality of 
information and work presented at internal IAIFI meetings 

• Treat each other with dignity and respect, support and encourage each other’s 
growth, and step in as needed to maintain an environment free of discrimination, 
harassment, and bullying 

Furthermore, members of the IAIFI and participants in IAIFI activities may not engage in 
retaliation against anyone for objecting to a behavior that may violate this code, 
reporting a violation of this code, or participating in the resolution of such a complaint. 

 

MIT Physics Community Values 

Our Physics Community Values stem from the basic principle that members of our 
community should treat each other with respect and decency at all times. In turn, we 
should not alienate, diminish or insult each other, either in word or deed. 

• Well-being: We support each other at all times and remember that we are not 
alone. 

• Respect: We value the multitude of ways to be a physicist and the many paths 
through our field and Department. 

• Inclusion: We strive to speak and act in ways that support and include all 
members of our community. 

• Collaboration: Physics is a social endeavor and we proudly collaborate with 
others to advance the field. 

• Mentorship: All physicists are here because of the mentorship we have received 
and continue to receive, and the mentorship we offer to others. 
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Join the IAIFI Summer School Slack workspace! 
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Monday, August 1, 2022 
 
8:30–9:00am 

 Breakfast is served  

9:00–9:30am 

 Welcome and introduction from Jesse Thaler, IAIFI Director 

9:30–10:30am 

 Taco Cohen, Research Scientist, Qualcomm Research Netherlands 

 Foundations of Geometric Deep Learning I 

 The success of deep learning applied to images, speech, and text has spurred 
research into the application of similar techniques to other kinds of data, such as 
graphs, points clouds, data on homogeneous spaces, and other manifolds. This 
field has come to be known as geometric deep learning. In this talk I will discuss the 
foundations of GDL, focusing on the basic concepts of symmetry groups, 
representations, and equivariant maps, as well as group & gauge equivariant 
convolutions for fields over homogeneous spaces and general manifolds. 

10:30–11:00am 

 Coffee break 

11:00am–12:00pm 

 Javier Duarte, Assistant Professor, University of California, San Diego 

 Representations, networks, and symmetries for learning from particle physics data 

 In experimental high energy physics (HEP), we collide high energy particle beams 
millions of times per second and observe the remnants of the collisions with 
hundreds of millions of detector channels. There is a growing interest in exploiting 
machine learning methods to extract physics from this raw detector data. In order to 
benefit from modern deep learning algorithms initially designed for computer vision 
or natural language processing tasks, it is common practice to transform HEP data 
into tabular data, images, or sequences. In this lecture, I will review these machine 
learning methods, as well as emerging methods like graph neural networks and 
symmetry-equivariant networks, which provide alternative ways of incorporating 
specialized domain knowledge. 
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12:00pm–1:00pm 

Lunch 

1:00–2:00pm 

Denis Boyda, Incoming IAIFI Fellow 

Tutorial I for Foundations of Geometric Deep Learning 

2:00–3:00pm 

Dylan Rankin, Postdoc, MIT/IAIFI 

Tutorial I for Model compression and fast machine learning in particle physics: 
Training Invariant Networks 

In this tutorial, we will explore neural network architectures that are capable of 
respecting the different inherent symmetries in datasets. We will use simulated data 
from particle physics and consider both symmetries of permutation invariance and 
Lorentz equivariance. We will construct successively more complex models that are 
capable of respecting these symmetries, and analyze how the architecture choices 
we make affect the model performance and learning. Finally, we will offer an 
opportunity to explore more complex symmetries and give participants an 
opportunity to test what they have learned on these more difficult problems. 

3:00–4:00pm 

Virtual Networking using Remotely Green 

4:00–6:00pm 

Welcome Dinner 
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Tuesday, August 2, 2022 
 
8:30–9:00am 

Breakfast is served 

9:00–9:30am 

Lightning Talks 
 See page 20 for abstracts 

• Leonardo Petrini, leonardo.petrini@epfl.ch, “Relative stability toward 
diffeomorphisms indicates performance in deep nets” 

 
• LOIC ELNATHAN TIOKOU FANGANG, elnathan.tiokou@aims-cameroon.org, 

“Adversarial Robustness of Different Federated Learning (FL) Frameworks” 
 
• Krish Desai, krish.desai@berkeley.edu, “Moment Unfolding” 
 
• Matthew Mould, mmould@star.sr.bham.ac.uk, “Gravitational-wave population 

modeling with deep learning”  
 
• Megan Schuyler Moss, msmoss@uwaterloo.ca, “Combining data-driven and 

Hamiltonian-driven training for learning quantum ground states” 
 
• Rodrigo Barbosa, rbarbosa@scgp.stonybrook.edu, “Towards Numerical G2 Metrics” 
 
• Aryeh Brill, aryeh.brill@gmail.com, “Towards a Self-Supervised Model of Short-

Timescale Gamma-ray Variability in Blazars” 
 

9:30–10:30am 

Taco Cohen, Research Scientist, Qualcomm Research Netherlands 

Foundations of Geometric Deep Learning II 

10:30–11:00am 

Coffee break 
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11:00am–12:00pm 

Javier Duarte, Assistant Professor, University of California, San Diego 

Model compression and fast machine learning in particle physics 

Efficient machine learning implementations optimized for inference in hardware 
have wide-ranging benefits, from lower inference latency to higher data throughput 
and reduced energy consumption. In this lecture, I will give an overview of effective 
techniques for reducing computation in neural networks, including pruning, or 
removing insignificant synapses, quantization, or reducing the precision of the 
calculations, and knowledge distillation, or transferring the knowledge from a large 
model to a smaller model. I will also review the connections to the lottery ticket 
hypothesis, interpretability, neural efficiency, robustness, and generalizability. 

12:00pm–1:00pm 

Lunch 

1:00–2:00pm 

Denis Boyda, Incoming IAIFI Fellow 

Tutorial II for Foundations of Geometric Deep Learning 

2:00–3:00pm 

Dylan Rankin, Postdoc, MIT/IAIFI 

Tutorial for Model compression and fast machine learning in particle physics: 
Compressing Neural Networks for Ultrafast Inference 

In this tutorial, we will explore how to apply different techniques to reduce the size 
and necessary computation for neural network inference while maintaining model 
performance. We will begin with models trained using standard techniques using 
floating point numbers. We will show how to apply pruning techniques to reduce the 
size of the networks by removing unnecessary connections. We will also show how 
to quantize the networks to reduce the number of bits necessary for encoding 
values during inference. In both cases, we will show how these techniques can be 
applied while maintaining desired model performance to allow for inference on low-
power devices such as FPGAs. Finally, participants will analyze the ramifications of 
these techniques on the latency and resources of synthesized designs for FPGA-
based inference. 
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3:00–3:30pm 

Coffee break 

3:30–4:30pm 

Yasaman Bahri, Research Scientist, Google Research (Brain Team) 

Deep learning in the large-width regime I 

We will review some of the foundational connections that arise between deep neural 
networks and other classic machine learning methods, albeit modified with new 
ingredients, in the limit where the neural network hidden layers have many nodes. 
These connections have been used across different research areas, including in the 
development of deep learning theory; in building new connections between machine 
learning and statistical physics; as well as in machine learning practice, including 
applications to physics. In the tutorials, we will gain experience with neural network 
libraries built to enable the recursive computations that form the core of these 
connections. 

5:00–6:00pm 

 Virtual Networking using Remotely Green 

 

Wednesday, August 3, 2022 
 
8:00–9:00am 

Virtual Networking using Remotely Green 

8:30–9:00am 

Breakfast is served 

9:00–9:30am 

Lightning Talks 
 See page 20 for abstracts 

• Nicole Hartman, nicole22@stanford.edu, “High dimensional background 
interpolation with generative models on ATLAS” 
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• Polina Abratenko, polina.abratenko@tufts.edu, “A Data-Driven Light Model using 
Neural Networks for the MicroBooNE Experiment” 

 
• Ahmed Youssef, youssead@ucmail.uc.edu, “ML for Hadronization” 

 
• Anindita Maiti, maiti.a@northeastern.edu, “Where Neural Network Meets 

Fundamental Physics” 
 

• Zev Imani, zeviel.imani@tufts.edu, “Score-Based Generative Modeling” 
 

• Varun Shankar, varunshankar@cmu.edu, “Machine Learning Turbulence Closures” 
 

• William Lewis, willewi@sandia.gov, “Data-driven design and discovery for 
Magnetized Liner Inertial Fusion at Sandia’s Z Facility* 

 
9:30–10:30am 

Yasaman Bahri, Research Scientist, Google Research (Brain Team) 

Deep learning in the large-width regime II 

10:30–11:00am 

Coffee break 

11:00am–12:00pm 

Sven Krippendorf, Senior Researcher, Mathematical Physics and String 
Theory, Ludwig Maximilian University of Munich 

Machine Learning for Beyond-the-Standard-Model Physics I 

These lectures aim to give an overview on how we can tackle questions in Beyond-
The-Standard-Model (BSM) physics using Machine Learning (ML). I will discuss a 
few types of questions to showcase how ML approaches can be adapted to fit into 
standard physics pipelines: 

1. How can we understand the pattern of experimentally viable BSM theories? 
Such models feature on the one hand consistency conditions from their 
respective UV-completion selecting a subset of theories at low-energies. On 
the other hand, the requirement of matching observations at low-energies 
poses apriori unknown constraints on the UV parameters, a classic inverse 
problem. I discuss how ML can help in addressing this inverse problem. A 
short preview can be obtained at 2111.11466. 

2. How can we phrase the search for mathematical structures as optimisation 
problems? This is to discuss how we can identify the symmetries associated 
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to a dynamical system using ML and how we can accelerate the search for 
solutions of PDEs using ML. References of interest for this part 
are: 1906.01563, 2104.14444, 2003.13679, 2012.04656 

3. How can we use ML to accelerate the physics inference pipeline? Depending 
on time, this part will feature heavily in the tutorials. 

12:00pm–1:00pm 

Lunch 

1:00–3:00pm 

Anna Golubeva, IAIFI Fellow 

Tutorial for Deep learning in the large-width regime 

3:00–3:30pm 

Coffee break 

3:30–4:30pm 

Career Panel 

• Yasaman Bahri, Research Scientist, Google Research (Brain Team) 
• Juan Carrasquilla, Faculty Member, Vector Institute; Adjunct Assistant 

Professor, University of Waterloo 
• Taco Cohen, Research Scientist, Qualcomm Research Netherlands 
• Javier Duarte, Assistant Professor, University of California, San Diego 
• Anna Golubeva, IAIFI Fellow 
• Sven Krippendorf, Senior Researcher, Mathematical Physics and String 

Theory, Ludwig Maximilian University of Munich 
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Thursday, August 4, 2022 
 
8:00–9:00am 
 
 Virtual Networking using Remotely Green 
 
8:30–9:00am 

Breakfast is served 

9:00–9:30am 

Lightning Talks 
See page 20 for abstracts 

• Tianji Cai, tianji_cai@ucsb.edu, “How to Make Statistical Inference on Theory 
Parameters when Simulations are Expensive?” 

 
• Jerry Ling, jling@g.harvard.edu, “HEP meets Julia: Doing physics analysis with 

speed, elegance, and flexibility” 
 
• Omar Alterkait, omar.alterkait@tufts.edu, “Particle Trajectory Reconstruction and 

Euclidian Equivariance” 
 
• Ankur singha, anksing@iitk.ac.in, “Conditional Normalizing Flow for Markov Chain 

Monte Carlo Sampling in the Critical Region of Lattice Field Theory” 
 
• Sebastian Larsen, sebastian.larsen16@imperial.ac.uk, “Graph Neural Networks for 

3D defect mapping in Laser Powder Bed Fusion” 
 
• Dimitrios Athanasakos, dimitrios.athanasakos@stonybrook.edu, “Jet Tagging with 

Deep Sets of Subjets”  
 
• Dr. Lingxiao Wang, lwang@fias.uni-frankfurt.de, “Solving inverse problems with 

physics-driven deep learning” 
 
• Astrid Anker, aanker@uci.edu, “Deep learning techniques for a real-time neutrino 

classifier” 
 

9:30–10:30am 

Sven Krippendorf, Senior Researcher, Mathematical Physics and String 
Theory, Ludwig Maximilian University of Munich 

Machine Learning for Beyond-the-Standard-Model Physics II 
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10:30–11:00am 

Coffee break 

11:00am–12:00pm 

Juan Carrasquilla, Research Scientist, Vector Institute; Adjunct Assistant 
Professor, University of Waterloo 

Machine learning for many-body physics I 

Over the past few years, machine learning (ML) has emerged as a powerful 
computational tool to tackle complex problems in various scientific disciplines. In 
particular, ML has been successfully used to mitigate the exponential complexity 
often encountered in many-body physics, the study of properties of quantum and 
classical systems built from a large number of interacting particles. In these 
lectures, we review some applications of ML in statistical mechanics, condensed 
matter physics, and quantum information. We will discuss select examples drawing 
from ML areas including supervised machine learning of phase transitions, 
unsupervised learning of quantum states, and the variational Monte Carlo method 
for approximating the ground state of a many-body Hamiltonian. For each algorithm, 
we briefly review the key ingredients and their corresponding implementation and 
show numerical experiments for a system of interacting Rydberg atoms in two 
dimensions among other systems. 

12:00pm–1:00pm 

Lunch 

1:00–3:00pm 

Siddharth Mishra-Sharma, IAIFI Fellow 

Tutorial for Machine Learning for Beyond-the-Standard-Model Physics: Modeling 
and inference: connecting theory and data 

Principled comparison of theory with observations is a bedrock of the scientific 
method, underlying in particular how information about fundamental physics can be 
extracted from data. Using contemporary physics examples, these hands-on 
tutorials will introduce strategies for defining statistical models, implementing them 
as (differentiable) probabilistic programs, and performing inference on them. 
Various inference methods will be discussed, including sampling-based (e.g., 
Markov Chain Monte Carlo), variational inference and, time permitting, simulation-
based (“likelihood-free”) inference. 
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3:00–3:30pm 

Coffee break 

3:30–4:30pm 

Di Luo, IAIFI Fellow 

Tutorial I for Machine learning for many-body physics 

6:00–8:00pm 

Pizza social with IAIFI at Harvard University 

 

Friday, August 5, 2022 
 
8:30–9:00am 

Breakfast is served 

9:00–9:30am 

Lightning Talks 
See page 20 for abstracts 

• Alexandre Falcao, alexandre.falcao@uib.no, “Constraining jet quenching models in 
heavy-ion collisions using Bayesian Inference” 

 
• Mehmet Demirtas, m.demirtas@northeastern.edu, “Machine Learning for String 

Theory and Algebraic Topology” 
 

• Matthew Duschenes, mduschen@uwaterloo.ca, “Learning and 
Overparameterization of Constrained Variational Quantum Circuits” 

 
• Xiaolong Li, lixl@udel.edu, “Preparing to Discover the Unknown with Rubin LSST: 

Time Domain” 
 
• Ivy Li, il11@rice.edu, “Autoencoders for the Inference of the Optical Properties of a 

Dual-Phase Time Projection Chamber” 
 
• Nayantara Mudur, nmudur@g.harvard.edu, “Towards better spatial regularization 

for astrophysical fields” 
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9:30–10:30am 

Juan Carrasquilla, Research Scientist, Vector Institute; Adjunct Assistant 
Professor, University of Waterloo 

Machine learning for many-body physics II 

10:30–11:00am 

Coffee break 

11:00am–12:00pm 

Di Luo, IAIFI Fellow 

Tutorial II for Machine learning for many-body physics 

12:00pm–1:00pm 

Lunch 

1:00–5:00pm 

Mini-hackathon: Choose a problem to work on in a team 
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Lecturers 
 
Yasaman Bahri, Research Scientist, Google 
Research (Brain Team)  

Yasaman Bahri is a Research Scientist at Google Brain working at 
the interface of machine learning and physical science, with a 
recent focus on the foundations of deep learning. She obtained 
her PhD (2017) at UC Berkeley in theoretical condensed matter 

physics. Her work is multidisciplinary in nature, and she has received recognition & 
given invited lectures in both physics and computer science. Most recently, she was a 
recipient of the Rising Stars Award in EECS (2020). 

 

Juan Carrasquilla, Faculty Member, Vector 
Institute; Adjunct Assistant Professor, 
University of Waterloo 

Juan Felipe Carrasquilla Álvarez is a research scientist at 
the Vector Institute and a Canada CIFAR artificial 
intelligence chair. Juan’s research interests are at the 
intersection of condensed matter physics, quantum 
computing, and machine learning. He completed his Ph.D. 
in Physics at SISSA and held postdoctoral positions at Georgetown University and the 
Perimeter Institute, as well as a research scientist position at D-Wave Systems Inc. 

 

Taco Cohen, Research Scientist, Qualcomm 
Research Netherlands 

Taco Cohen is a machine learning researcher at Qualcomm AI 
Research in Amsterdam and co-director at the ELLIS Geometric 
Deep Learning program. He was a co-founder of Scyfer, a 
company focused on deep active learning, acquired by Qualcomm 
in 2017. He received a BSc in theoretical computer science from 
Utrecht University, and a MSc in artificial intelligence and PhD in 
machine learning (with prof. Max Welling) from the University of 

Amsterdam. His research is focused on equivariant networks and geometric deep 
learning, causality and interactive learning. He has interned at Google Deepmind 
(working with Geoff Hinton) and OpenAI.  
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Javier Duarte, Assistant Professor, University of 
California, San Diego 

As part of the CMS experiment at the CERN Large Hadron 
Collider, Javier Duarte’s group performs measurements of high-
momentum Higgs bosons and searches for exotic new physics. 
They are also interested in hardware-accelerated machine learning 
for trigger and computing as well as geometric deep learning for 
particle physics. 

 

Sven Krippendorf, Senior Researcher, Ludwig 
Maximilian University of Munich 

Dr Sven Krippendorf is a senior researcher at LMU Munich. His 
research interests are at the interface of physics and machine 
learning, using machine learning to gain insights into fundamental 
physics and to use the theoretical physicist’s toolbox to understand 
the dynamics of neural networks. In teaching, he is currently working 
towards the realisation of a new Master’s degree in physics with a 
specialisation in artificial intelligence at LMU Munich. 
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Tutorial Leads 
 
Denis Boyda, Incoming IAIFI Fellow  
 
Denis Boyda has been working on the application of the 
Machine Learning method to simulations of physical systems 
and bringing physical ideas to Machine Learning. His 
research is devoted to developing algorithms enabling 
simulations of nuclear and particle physics, which are 
currently computationally intractable. Denis Boyda is 
interested in the Monte Carlo techniques and generation 
modeling. He develops equivariant models that respect the 

symmetry of a target problem and runs simulations at leading supercomputer machines. 
 
 
Anna Golubeva, IAIFI Fellow  
 
Anna is currently a postdoctoral fellow at IAIFI, working 
on developing a theoretical foundation of deep learning 
with methods from statistical physics. She obtained her 
PhD in 2021 at the Perimeter Institute for Theoretical 
Physics and the University of Waterloo, where she was 
advised by Roger Melko. During her PhD, she was also 
a graduate affiliate at the Vector Institute for AI in 
Toronto. Previously, she completed the Perimeter 
Scholars International master’s program (2017), a MSc in Theoretical Physics with 
focus on computational approaches to quantum many-body systems (2016), and a BSc 
in Biophysics (2014) at the Goethe University in Frankfurt, Germany.  
 

 
 Di Luo, IAIFI Fellow 
 
Di Luo received his undergraduate degree with majors in 
physics and mathematics from the University of Hong Kong in 
2016. He graduated with master degree in mathematics and 
Ph.D. degree in physics at the University of Illinois, Urbana-
Champaign in 2021. Di Luo is working on research in the 
intersection of quantum many-body physics, quantum 
information science, and artificial intelligence. He has been 
developing quantum algorithms and machine learning 
approaches for condensed matter physics, high energy 

physics, and quantum information science. Di Luo is interested in understanding nature 
from the perspectives of information and computation as well as developing intelligence 
inspired by ideas from nature. 
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 Siddharth Mishra-Sharma, IAIFI Fellow 
 
Siddharth is an IAIFI Fellow at MIT interested in developing 
novel statistical methods for accelerating the discovery of 
new physics in astrophysical and cosmological observations 
at all accessible scales. He is especially focused on 
developing analysis techniques based on machine learning 
that enable new ways of searching for signatures of physics 
beyond the Standard Model, in particular the nature of dark 

matter, using data from ongoing and upcoming cosmological surveys. 
 
 
Dylan Rankin, Postdoc, MIT/IAIFI 
 
Dylan Rankin received his Ph.D. in 2018 from BU under Tulika Bose, 
and is currently a postdoc at MIT with Phil Harris. He will start as a 
faculty member at UPenn this coming spring. He is interested in 
machine learning, heterogeneous computing, trigger and data 
acquisition systems, Higgs physics, and exotic searches. His work is 
focused on using novel analysis methods both at the CERN Large 
Hadron Collider and beyond.  
 
 
 

Virtual TAs 
 
Virtual TAs will be available on Slack during the tutorials and the hackathon to answer 
questions and provide support to virtual attendees.  
 

 
 
 
 
 
 

Peter Y. Lu 
MIT, Grad Student 
 

Ouail Kitouni 
MIT, Grad Student 
 

Tri Nguyen 
MIT, Grad Student 
 

Niklas Nolte 
MIT, Postdoc 
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Lightning Talk Abstracts 
In alphabetical order by speaker last name 
 
Abratenko, Polina, polina.abratenko@tufts.edu, A Data-Driven Light Model using Neural 
Networks for the MicroBooNE Experiment 
MicroBooNE is a short baseline neutrino oscillation experiment that employs Liquid Argon Time 
Projection Chamber (LArTPC) technology in conjunction with an array of Photomultiplier Tubes 
(PMTs), which detect scintillation light. Scintillation light detection is critical to the operation of 
the detector, as it provides the means for triggering on beam-related interactions and the 
rejection of cosmic ray backgrounds. As a result, modeling of the expected optical detector 
signal is important. Currently, the model for the optical signal is based on simulation. This 
generated photon library has some known limitations, however, including time intensive 
generation as well as inaccurate response in certain regions of the detector. We propose a 
data-driven approach to mapping the light yield in the MicroBooNE detector through the use of a 
neural network, which allows for specific conditioning based on MicroBooNE data. 
 
Alterkait, Omar, omar.alterkait@tufts.edu, Particle Trajectory Reconstruction and 
Euclidian Equivariance  
Training neural networks to operate on three-dimensional trajectories from particle detectors is 
challenging due to the large combinatorial complexity of the data in three dimensions. Using 
networks that incorporate Euclidian Equivariance could prove to be very beneficial in reducing 
the need for data augmentation. Our focus is on data from neutrino experiments using liquid 
argon time projection chambers. 
 
Anker, Astrid, aanker@uci.edu, Deep learning techniques for a real-time neutrino 
classifier  
The ARIANNA experiment is a neutrino detector located in Antarctica. To increase the ability to 
measure neutrinos, one method is to lower the trigger threshold and collect more data, but in 
the most remote locations in Antarctica, data transmission speed is limited. This work 
demonstrates that deep learning techniques can be used to reject thermal noise in real time, 
which will increase the detector’s sensitivity to neutrino signals. 
 
Athanasakos, Dimitrios, dimitrios.athanasakos@stonybrook.edu, Jet Tagging with Deep 
Sets of Subjets 
We introduce a complete basis of subjets for machine learning-based jet tagging. The subjets 
are obtained with (i) a fixed radius or (ii) the clustering is performed until a fixed number of 
subjets is obtained. The subjet momenta, relative angles and (optionally) the subjet masses are 
taken as input to a permutation invariant neural network. For nonzero values of the subjet 
radius, the resulting classifier is Infrared-Collinear (IRC) safe. By lowering the subjet radius, we 
can increase the sensitivity to nonperturbative physics. In the limit of a vanishing subjet radius, 
the exclusive subjet basis approximates deep sets/particle flow networks (IRC unsafe). The 
basis introduced here is thus ideally suited to quantify the information content of jets at the 
boundary of perturbative vs. nonperturbative physics. 
 
Barbosa, Rodrigo, rbarbosa@scgp.stonybrook.edu, Towards Numerical G2 Metrics 
G2 manifolds are a cornerstone of M-theory - they provide minimally supersymmetric 
compactifications in four spacetime dimensions, and thus are needed to recover standard model 
physics. However, they are notoriously difficult to construct. In this talk I will explain a numerical 
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approach to approximate G2 metrics based on the success of machine learning techniques for 
Calabi-Yau metrics. This is work in progress with Michael Douglas, Daniel Platt and Yidi Qi. 
 
Brill, Aryeh, aryeh.brill@gmail.com, Towards a Self-Supervised Model of Short-Timescale 
Gamma-ray Variability in Blazars 
Blazars, active galactic nuclei with relativistic jets pointed almost directly at Earth, exhibit strong, 
apparently stochastic flux variability at virtually all observed wavelengths and timescales, from 
minutes to years. The physical origin of this variability is poorly understood. For 14 years, the 
Large Area Telescope aboard the Fermi space telescope (Fermi-LAT) has conducted regular 
monitoring of thousands of blazars in the high-energy gamma-ray band. Measurements with 
Fermi-LAT on short timescales (days or less) have revealed complex variability patterns 
involving multiple gamma-ray-emitting bursts, but these measurements are generally possible 
only during rare, bright flares due to Fermi-LAT’s finite sensitivity. However, short-timescale 
phenomena may still leave statistical imprints on the light curves derived from integrating over 
intermediate timescales, such as weeks. Using self-supervised deep learning, we propose to 
construct a non-parametric representation of blazar gamma-ray variability, incorporating 
measurement errors, upper limits, and missing data using trainable encodings. The self-
supervised architecture can be used to produce an embedded representation of stochastic 
variability patterns, possibly exhibiting complex long-range dependencies, that can be studied to 
extract scientifically relevant information. 
 
Cai, Tianji, tianji_cai@ucsb.edu, How to Make Statistical Inference on Theory Parameters 
when Simulations are Expensive? 
From fundamental particle physics to astrophysics and cosmology, our knowledge of Nature is 
often summarized in a chain of complex simulators which allows high-fidelity data to be 
generated, serving as the pillar of our modern scientific inquiries. Yet what we ultimately wish to 
probe are the theory parameters whose values are to be inferred and constrained by comparing 
the simulated data with experimental observations. Due to the complexity of real-world 
simulators, it is usually impossible to explicitly calculate the likelihood function, making it difficult 
to perform inference using traditional statistical methods. Several approaches—collectively 
termed as simulation-based or likelihood-free inference—have been proposed in such setting, 
utilizing recent advances in machine learning. Here we focus on one type of such techniques 
called Bayesian Optimization for Likelihood-free Inference (BOLFI), which includes the 
implementation of active learning for expensive simulations. We introduce Optimal Transport 
distances as the metric for gauging the discrepancy between simulations and observations and 
demonstrate the power of this new framework by applying it to the analysis of dark matter 
subhalos.            
 
Demirtas, Mehmet, m.demirtas@northeastern.edu, Machine Learning for String Theory 
and Algebraic Topology 
It is notoriously difficult to obtain solutions of string theory that are similar to our universe, in part 
because the space of solutions is huge and the algebraic topology calculations required are 
computationally expensive. I will describe a supervised learning algorithm that bypasses these 
calculations in a class of solutions that are relatively well understood, and comment on possible 
applications. 
 
Desai, Krish, krish.desai@berkeley.edu, Moment Unfolding  
Deconvolving ( 'unfolding') detector distortions is a critical step in the comparison of cross 
section measurements with theoretical predictions.  However, most of these approaches require 
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binning while many predictions are at the level of moments.  We develop a new approach to 
directly unfold distribution moments as a function of any other observables without having to first 
discretize.  Our Moment Unfolding technique uses machine learning and is inspired by 
Generative Adversarial Networks (GANs).  We demonstrate the performance of this approach 
using jet substructure measurements in collider physics.  We also discuss challenges with 
unfolding all moments simultaneously, drawing connections to the renormalization of the 
partition function.  
 
Duschenes, Matthew, mduschen@uwaterloo.ca, Learning and Overparameterization of 
Constrained Variational Quantum Circuits 
Many problems in quantum information, including simulation, state preparation, control, and 
compilation, can be mapped to learning an optimal quantum circuit, given a variational ansatz. 
These parameterized quantum systems have recently been shown to display curious 
phenomena of different regimes of training during optimization, depending on the specific 
ansatz. An important regime is the overparameterized, or lazy regime, where parameters may 
negligibly vary over the course of optimization, and global optima may potentially be reached 
exponentially quickly (Larocca et al., arXiv:2109.11676, 2021). Here, we study the case where 
there are constraints on the ansatz, both with respect to the available circuit components, such 
as from restrictions of which gates are native to hardware, as well as with respect to constraints 
on the variable parameters of the circuit, such as bounds on parameters, or the locality or 
sharing of parameters across components of the circuit. Given these constraints, we investigate 
their effect on the regimes of training, the convergence of optimization, and the resulting 
parameters of the circuit using metrics such as variants of the quantum geometric tensor. 
 
Falcao, Alexandre, alexandre.falcao@uib.no, Constraining jet quenching models in 
heavy-ion collisions using Bayesian Inference 
In relativistic heavy-ion collisions, like at the RHIC and LHC, a phase of Quantum 
Chromodynamics (QCD) of hot and dense nuclear matter, so called Quark Gluon Plasma 
(QGP), is briefly formed. Within this resulting QGP, we observe the same hard QCD processes 
that occur in proton-proton collisions, producing collimated sprays of energetic particles referred 
to as jets. The structure of these jets are relatively well known from proton-proton collisions. 
While traversing the QGP, the jets will lose energy by medium-induced radiation, a process 
known as jet quenching. QCD factorization allows us to model jet quenching as a convolution 
between the jet cross section in proton-proton collisions and an energy loss probability 
distribution, D(ε), in order to obtain the nucleus-nucleus jet cross section. Our main goal is then 
to learn the parameterization of D(ε), from experimental data using machine learning methods. 
We employ Bayesian Inference to learn and constrain the model according to the current 
available data. We can then validate against similar observables and use them for prediction in 
other processes where jet quenching plays an important role. 
 
"FANGANG, LOIC ELNATHAN TIOKOU, elnathan.tiokou@aims-cameroon.org, 
Adversarial Robustness of Different Federated Learning (FL) Frameworks 
Intelligent machines have significantly enhanced human living conditions since the introduction 
of Machine Learning. Ranging, from powerful systems detecting and identifying an object in the 
image, to automatic car driving, or intelligent and complex software such as Google which daily 
is indispensable for our living; Machine Learning has become   
omnipresent in our century. However, to achieve milestones as done so far, we need to nurture 
our systems with data, but unfortunately, there are certain domains where the protection of data 
is the utmost concern, hence are not easily available; this includes the health sector, banking, 



 23 

etc. Federated Learning (FL) develops as an effective way to not only do tasks that may be 
done with traditional machine learning but also to preserve and secure data in accordance with 
new laws and regulations.Federated Learning systems, like any other system, are vulnerable to 
quality issues such as assaults and byzantine flaws. As a result, various efforts have been 
undertaken to resolve quality issues and strengthen FL systems. However, the effective 
robustness of different FL frameworks is not guaranteed and is still yet to be improved. In this 
study, we are going to first all present the fundamentals around Federated Learning and 
different notions involved in the robustness of an FL system. Second, we present a detailed 
architecture of some FL frameworks, with a summary comparison. Third, we conduct an 
empirical investigation to assess the quality of the SOTA FL systems in facing some simulated 
attacks. Finally, we review the limitations and make recommendations for further research 
works." 
 
Hartman, Nicole, nicole22@stanford.edu, High dimensional background interpolation 
with generative models on ATLAS 
The 4b channel is attractive for di-Higgs searches because of its high branching ratio and 
leading sensitivity at high mass. The fully hadronic final state necessitates the use of a data-
driven background estimate, and obtaining a precise estimate with an accurate uncertainty 
assessment is the central challenge for this analysis. In this work, we explore conditional neural 
density estimation techniques to learn the distribution over the smoothly varying kinematics of 
background HH candidate events. In particular, we utilize a normalizing flow, which uses a 
sequence of invertible transformations to set up an exact likelihood parametrization. This 
normalizing flow is conditioned on the Higgs candidate masses, allowing us to sample from the 
learned multi-dimensional probability distribution for each given Higgs candidate mass pair. A 
Gaussian Process (GP) models the joint distribution over Higgs candidate masses. The 
samples from the GP are used to condition the flow to form a combined model which allows 
interpolation over blinded values of Higgs candidate masses. We conclude with some 
preliminary results comparing this interpolation work with our current analysis strategy of using 
likelihood-ratio based reweighting for data-driven background estimation in the various 
validation regions for background validation used in the analysis. 
 
Imani, Zev, zeviel.imani@tufts.edu, Score-Based Generative Modeling  
A brief overview of score-based generative modeling through stochastic differential equations 
and an application of this method for the MicroBooNE experiment. 
 
Larsen, Sebastian, sebastian.larsen16@imperial.ac.uk, Graph Neural Networks for 3D 
defect mapping in Laser Powder Bed Fusion 
Since defects form due to the stochastic nature of the LPBF process, stringent post-build 
inspection regulations are a required burden. However, locating defects in-situ would enable a 
component to be qualified in real time, automating this requirement.  
A graph neural network model was developed to provide a geometric invariant method for 
localising defects in the material. The model was trained on high-speed melt pool monitoring 
data, collected from a component manufactured with seeded defects. A k-fold cross validation 
was performed where each seeded defect was detected and localised. The defect sizes were 
correlated with the 3D probability map which showed positive correlation with number of 
detections. Graph neural networks provide an efficient way to locate defects in a component, 
while remaining invariant to geometry. We believe the effectiveness comes from incorporating 
this physical structure into a machine learning model. 
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Lewis, William, willewi@sandia.gov, Data-driven design and discovery for Magnetized 
Liner Inertial Fusion at Sandia’s Z Facility* 
Magnetized Liner Inertial Fusion (MagLIF) is a magneto-inertial fusion concept studied at 
Sandia’s Z pulsed power facility. By combining an external magnetic field, laser preheating of 
the deuterium fuel contained within a cylindrical Beryllium tube or liner, and finally compression 
of the liner with an ~100ns rise time ~20MA peak current pulse, we achieve fusion relevant 
conditions. However, experiments are costly and complex multiphysics simulations used for 
analysis can be prohibitively expensive for regular application. Furthermore, the extreme high-
energy density (HED) environments generated challenge diagnostic development and 
application. As a result, extraction of detailed physical quantities of interest is often complicated 
by the highly spatio-temporally integrated diagnostics commonly fielded. The recent application 
of methods ranging from Bayesian data assimilation to data-driven model emulation and 
experimental data processing are accelerating the rate of design and discovery. In this lightning 
talk, I provide an overview of several published and ongoing efforts to apply modern data 
science methods to understand the structure and conditions of the HED plasma generated in 
MagLIF experiments.  
*SNL is managed and operated by NTESS under DOE NNSA contract DE-NA0003525.  
SAND2022-9550A 
 
Li, Xiaolong, lixl@udel.edu, Preparing to Discover the Unknown with Rubin LSST 
Time Domain 
Based in Chile and expected to start in 2024, with a sensitivity and resolution similar to those of 
the Hubble Space Telescope, the Rubin LSST will take pictures of the whole southern 
hemisphere sky in six different colors repeating observations of each sky position every few 
days an unprecedented survey to revolutionize our understanding of the Universe from Solar 
System asteroids to the shape and evolution delivering 20Tb of information-rich data every night 
for 10 years. LSST is certain of the Universe itself. But most importantly LSST will have the 
potential to make unexpected discoveries. But how can we assure that the choices we are 
making in designing the LSST observing strategy will not prevent us from discovering of the 
unknown? The operations of LSST are evaluated by metrics under the Metric Analysis 
Framework (MAF) API. Although many metrics have been designed to assess how well a 
proposed strategy would discover planets, or exploding stars, and allow us to extract their 
physical properties, given a set of observational choices (points, alternation of filters, cadence of 
observations), designing a metric to evaluate LSST's ability to discover unknown phenomena is 
a conceptually and practically challenging task. We present such a metric by mapping LSST 
planned observations to a phase space defined by the brightness, color and the change of 
those features. Based on the distribution in phase space we will be able to tell which regions 
support detection and which do not. Our results allow us to design a survey that maximizes our 
chances to discover unknown unknowns. 
 
Li, Ivy, il11@rice.edu, Autoencoders for the Inference of the Optical Properties of a Dual-
Phase Time Projection Chamber 
A dual-phase time projection chamber (TPC) uses photosensors to measure the light produced 
by particle interactions occurring inside the detector.  The optical properties of the TPC are 
driven by the detector's geometry and materials. Simulations of these optical properties will 
depend on physical parameters inside the detector and can be computationally expensive to 
generate. However, an unsupervised method such as autoencoders provide a way to infer these 
optical properties more efficiently. Autoencoders are unsupervised neural networks built around 
learning a representation of its input data. An autoencoder's architecture consists of an encoder, 
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which maps an input to some latent space representation, and a decoder, which uses the latent 
space representation to reconstruct the input. During this talk, I will expand on this methodology 
and discuss the current status of measuring a TPC's optical parameters with autoencoders. 
 
Ling, Jerry, jling@g.harvard.edu, HEP meets Julia: Doing physics analysis with speed, 
elegance, and flexibility 
The High-Energy Physics (HEP) community, especially the group doing analysis, has facing the 
two-language problem for a long time. Often, physicists would start prototyping with a Python 
front-end which glues to a C/C++/Fortran back-end. Soon they will hit a task which is extremely 
hard to express in columnar (i.e. ""vectorized"") style, a type of problems which are normally 
tackled with libraries like numpy or pandas. This usually leads to either writing C++ kernels and 
interface them with Python, or porting the prototype to C++ and start to maintain two code bases 
including the wrapper code. Julia, a high-performance language with simple and expressive 
syntax [@Julia]. Julia is designed to solve the two-language problem in general. The talk would 
present technical merit of Julia and the stat of Julia ecosystem for HEP at large. 
 
Maiti, Anindita, maiti.a@northeastern.edu, Where Neural Network Meets Fundamental 
Physics  
Ensembles of initialized Neural Networks behave as ‘field theories’, the mathematical framework 
describing fundamental particles, that constitute our universe, and their interactions.  The 
asymptotic Gaussian Process limit of Neural Networks, at infinite width and i.i.d. parameters, 
describe the theory of fundamental particles when they do not interact with each other. Close to 
the GP limit, ensembles of Neural Networks behave as fundamental particles that interact 
weakly with each other – such phenomena are well understood in theoretical physics. As non-
Gaussianities become large, away from the GP limit, NN ensembles resemble fundamental 
particles interacting strongly – such systems lack proper understanding via theoretical physics. 
In this talk, I will discuss how correlation functions, partition functions and symmetries of non-
Gaussian Neural Nets, at finite width and / or parameter correlations, can lead to a better 
understanding of correlation functions, partition functions and symmetries of strongly interacting 
fundamental particles. Thus, we can use initialized Neural Networks to potentially contribute to 
the fundamental physics of our universe.    
    
Moss, Megan Schuyler, msmoss@uwaterloo.ca, Combining data-driven and Hamiltonian-
driven training for learning quantum ground states.  
Rydberg atom arrays are programmable quantum simulators capable of preparing interacting 
qubit systems in a variety of quantum states. Due to long experimental preparation times, 
obtaining projective measurement data can be relatively slow for large arrays, which poses a 
challenge for state reconstruction methods such as tomography. Today, novel groundstate 
wavefunction ansätze like recurrent neural networks (RNNs) can be efficiently trained not only 
from projective measurement data, but also through Hamiltonian-guided variational Monte Carlo 
(VMC). In the linked paper (below), we demonstrate how pretraining modern RNNs on even 
small amounts of data significantly reduces the convergence time for a subsequent variational 
optimization of the wavefunction. This suggests that essentially any amount of measurements 
obtained from a state prepared in an experimental quantum simulator could provide significant 
value for neural-network-based VMC strategies. This talk will specifically focus on the simplicity 
of combining the two types of training for the same RNN in order to leverage all available 
information about the system of interest. 
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Mould, Matthew, mmould@star.sr.bham.ac.uk, Gravitational-wave population modeling 
with deep learning 
The catalog of gravitational-wave events is growing, and so are our hopes of constraining the 
underlying astrophysics of stellar-mass black-hole mergers by inferring the distributions of, e.g., 
masses and spins. While conventional analyses parametrize this population with simple 
phenomenological models, we develop a flexible approach in which the population model is 
learnt by a deep neural network and can be used to perform hierarchical Bayesian inference 
with data from the most recent LIGO/Virgo catalog. Applying this pipeline to simple numerical 
simulations of hierarchical stellar-mass black hole formation –in which first-generation black 
holes born in stellar collapse form binaries whose merger remnants can undergo further 
mergers– we find that features in the current gravitational-wave catalog can be accommodated 
by this scenario. Our deep learning model predicts at least 15% of the intrinsic population is 
made up of higher-generation black holes. This approach readily extends to more realistic 
astrophysical simulations, and we demonstrate how it can be extended to model subpopulations 
within a given formation channel, as well as to perform astrophysics-agnostic population 
inference. 
 
Mudur, Nayantara, nmudur@g.harvard.edu, Towards better spatial regularization for 
astrophysical fields 
Galactic extinction maps play a crucial role in astronomy as they are needed to derive the true 
magnitudes of samples of extragalactic objects that enable cosmological analyses. While 
emission-based maps have high resolution, they have been shown to contain localized 
systematic issues, creating a need for alternative extinction maps based on measurements of 
starlight. Current stellar posterior inference frameworks only yield noisy stochastic 
measurements of the underlying extinction field, making existing star-based maps either lower 
resolution or much noisier. We generate a spatial prior over dust images by learning the 
wavelet-scattering-transform (WST) coefficients of patches of emission-based maps. We then 
do gradient descent on this analytically-differentiable WST prior and the likelihood derived from 
star-based measurements. I will describe some preliminary results on using analytically-
differentiable wavelet-scattering-transform (WST) coefficient-based priors to generate more 
realistic, lower noise star-based extinction maps. 
 
Petrini, Leonardo, leonardo.petrini@epfl.ch, Relative stability toward diffeomorphisms 
indicates performance in deep nets 
Understanding why deep nets can classify data in large dimensions remains a challenge. It has 
been proposed that they do so by becoming stable to diffeomorphisms, yet existing empirical 
measurements support that it is often not the case. We revisit this question by defining a 
maximum-entropy distribution on diffeomorphisms, that allows to study typical diffeomorphisms 
of a given norm. We confirm that stability toward diffeomorphisms does not strongly correlate to 
performance on benchmark data sets of images. By contrast, we find that the stability toward 
diffeomorphisms relative to that of generic transformations Rf correlates remarkably with the test 
error ϵt. It is of order unity at initialization but decreases by several decades during training for 
state-of-the-art architectures, while it increases for fully connected nets. For CIFAR10 and 15 
known architectures, we find ϵt≈0.2*Rf**0.5, suggesting that obtaining a small Rf is important to 
achieve good performance. We provide simple models of invariant learning that rationalize our 
findings. 
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Shankar, Varun, varunshankar@cmu.edu, Machine Learning Turbulence Closures 
There are two emerging approaches to differentiable physics, (i) incorporating symmetry in 
machine learning architectures ensuring physicality of the predictions with respect to the 
underlying system and (ii) pairing differentiable programming with classical numerical methods 
for physical simulation. In this talk, we will address both of these approaches towards turbulence 
modeling. In the first category, we propose a novel implementation of SO(3)-equivariant tensor 
graph networks to model moderate Reynolds number fluid systems in an arbitrary point-cloud 
domain. We use our model to predict, a-priori, turbulent quantities such as the eddy viscosity 
field. The resulting field is used in conjunction with standard CFD codes to solve for the steady-
state pressure and velocity fields. The encoded symmetries allow for natural representation of 
the tensor fields involved in fluid dynamics calculations while respecting their geometric 
properties. Our framework reduces the computational cost of simulations by removing the need 
to solve additional turbulence closure equations during the simulation. We validate our outputs 
with a-posteriori analysis of the solution fields. In the second category, we will discuss an 
approach using the universal differential equations paradigm that can combine physics along 
with machine learning to develop turbulence closure models. We consider the 1D Burgers 
system as the ideal test problem for modeling the energy spectra observed in advection-
dominated turbulence problems. Rather than naively training a coarse-grid correction term 
(called turbulence closure) to the Burgers equation, we train components of the transport 
equation to the closure in an end-to-end fashion. Addition of structure in the form of physics 
information brings a level of interpretability to the model, potentially offering a stepping stone to 
the future of closure modeling. 
 
Singha, Ankur, anksing@iitk.ac.in, Conditional Normalizing Flow for Markov Chain Monte 
Carlo Sampling in the Critical Region of Lattice Field Theory 
In Lattice Field Theory, one of the key drawbacks of the Markov Chain  Monte Carlo(MCMC) 
simulation is the high correlation between the generated samples in the critical region. 
Generative machine learning methods, such as normalizing flows, offer a promising solution to 
speed up MCMC simulations, especially in the critical region. However, training these models 
for different parameter values of the lattice theory is inefficient. We address this issue by 
interpolating or extrapolating the flow model in the critical region. We demonstrate the 
effectiveness of the proposed method for MCMC sampling in critical regions for multiple 
parameter values of phi4 scalar theory in 1+1 dimensions and compare its performance against 
HMC and flow-based methods. 
 
Wang, Dr.Lingxiao, lwang@fias.uni-frankfurt.de, Solving inverse problems with physics-
driven deep learning 
Inverse problems occur in almost all physical research, especially in inferring properties of 
many-body systems from finite noisy observations. The prior knowledge for specific physical 
systems routinely offers essential regularization schemes for solving the ill-posed problem 
approximately. Aiming at this point, we propose an automatic differentiation framework as a 
generic tool for the reconstruction from observable data. In lattice calculations and compact star 
cases, we represent spectral functions and equation of states by neural networks respectively, 
and set chi-square as loss function to optimize the parameters with backward propagation 
unsupervisedly. Our reconstructions approach compatible results compared with existing 
methods, moreover, it should be noted that the freedom of introducing regularization are 
inherent advantages and may lead to improvements of solving inverse problem in the future. 
 
 



 28 

Youssef, Ahmed, youssead@ucmail.uc.edu, ML for Hadronization 
In this talk, I will give an overview on the first steps in the development of a new class of 
Hadronization Models utilizing machine learning techniques. We successfully implement, 
validate, and train a conditional sliced-Wasserstein autoencoder to replicate the Pythia 
generated kinematic distributions of first-hadron emissions when the Lund string model of 
hadronization implemented in Pythia is restricted to the emissions of pions only. The trained 
models are then used to generate the full hadronization chains, with an IR cutoff energy 
imposed externally. The hadron multiplicities and cumulative kinematic distributions are shown 
to match the Pythia generated ones. I will also discuss possible future generalizations of our 
results. 
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