NEURAL OPERATORS: ACCELERATING SCIENTIFIC SIMULATIONS BY LEARNING ON FUNCTION SPACES

Anima Anandkumar

Bren Professor, Caltech CMS

Senior Director of Al Research, NVIDIA

.MS , NVIDIA

MILLION-X LEAP IN SCIENTIFIC COMPUTING

AI/ML to enable the leap in performance

1990

CLIMATE MODELING REQUIRES MILLION-X SPEEDUPS

Computational constraints limit model resolution

MILLION-X LEAP IN SCIENTIFIC COMPUTING

AI/ML to enable the leap in performance

10⁹ 10⁸ 10⁷ 10⁶ 10⁵ **10**⁴ 10³ 10² 10¹ 1980 1990

FOURIER NEURAL OPERATOR

DISCRETIZATION-INVARIANT LEARNING

One AI model for any discretization: no re-training

Neural Network

Input and output at fixed resolution

Neural Operator

Input and output at any points in domain

DISCRETIZATION-INVARIANCE OF NEURAL OPERATOR

Definition: a trained AI model is discretization-invariant if

- We can query at any point.
- Converges upon mesh refinement to a limit.

Converging solution

INTEGRAL OPERATOR FOR SOLVING LINEAR PDE

Input Integral Linear Operator

 $\int \kappa(x,y) \, v(y) \, dy$

- Integral operator outputs functions (not just finite-dimensional vectors). ٠
- Integral operator is discretization invariant. •

Output

K(**x**, **y**) Kernel of integral operator For heat diffusion

NEURAL OPERATOR: A GENERAL FRAMEWORK

- Integral operator outputs functions (not just finite-dimensional vectors).
- Integral operator is discretization invariant.

Non-linearity $\rightarrow \bullet \bullet \bullet Output$

DISCRETIZATION-INVARIANCE

Model Property	CNNs	DeepONets	CNNs+
Discretization Invariance	×	×	
Query at any point	×	1	
Input at any point	×	×	
Universal Approximation	X	✓	

- Neural operators are discretization-invariant. •
- Neural operators are universal approximators in function spaces. •

NEURAL OPERATOR: A GENERAL FRAMEWORK

- Integral operator outputs functions (not just finite-dimensional vectors).
- Integral operator is discretization invariant.

Non-linearity $\rightarrow \bullet \bullet \bullet Output$

FOURIER NEURAL OPERATOR: EFFICIENT FRAMEWORK

- Special case of integral linear operator: convolution
- Global (continuous) convolution over the domain

Filters in CNN

Fourier Filters

FOURIER TRANSFORM FOR GLOBAL CONVOLUTION

Integral linear operator

 $\int \kappa(x,y) \, v(y) \, dy$

Convolution operator (special case of integral operator)

Solving convolution in Fourier domain

 $\mathcal{F}^{-1}(\mathcal{F}(\kappa) \, . \, \mathcal{F}(v))$

 $R := \mathcal{F}(\kappa)$

Learn weights *R* in Fourier Domain

FNO: FOURIER NEURAL OPERATOR

- Convolution = multiplication in frequency domain.
- Learning weights in frequency domain.
- Fourier Transform implements convolution and also discretization invariant.

FOURIER LAYER IN NEURAL OPERATOR

The linear transform W is pointwise operation at each location x that can help learn residual from Fourier layer, e.g., non-periodic boundary

DEMONSTRATING DISCRETIZATION INVARIANCE OF FNO

Zero-shot super-resolution

Train using coarse resolution data

Directly evaluate on higher resolution (no re-training)

FNO: FOURIER NEURAL OPERATOR

- Convolution = multiplication in frequency domain.
- Learning weights in frequency domain.
- Fourier Transform implements convolution and also discretization invariant.

OPTIMIZATION OF FOURIER NEURAL OPERATOR

- For successful learning, need appropriate selection of
 - Number of frequency modes
 - Resolution of training data

- Too few frequency modes and low-resolution training data can cause underfitting.
- Too many frequency modes can lead to overfitting.
- High resolution training data is computationally expensive to obtain and train on.

- Proposed: Incrementally augment both frequency modes and training resolution
- Is faster to train and better generalization.

PHYSICS INFORMED NEURAL OPERATORS

PINO: PHYSICS-INFORMED NEURAL OPERATOR

PINO: PHYSICS-INFORMED NEURAL OPERATOR

PINO can learn solution operator for a family of equations and fine-tune on an instance

Operator learning

Instance-wise finetuning

TRANSFER LEARNING WITH PINO

Operator learned on Re100, fine-tune to Re500. Converges 3x faster.

Re100

Re500

INVERSE PROBLEMS WITH PINO

Inverse problem: given solution of forward simulation, recover input. PINO makes the inverse prediction more physically valid.

PDE constraints

APPLICATIONS OF FNO

Ground Truth

Our AI (FourCastNet) is **45,000 times** faster than current weather models

FourCastNet

FOURCASTNET FOR WEATHER PREDICTION

- Trained on 10 TB of weather data
- 8x higher resolution than any other AI model for weather forecasting.
- **45,000x** speedup
- 25000x smaller energy footprint.
- 1000-member ensemble in a fraction of a second.
- Unparalleled accuracy of surface winds and precipitation up to one week.

CLIMATE CHANGE MITIGATION: MODELING CO₂ STORAGE Our AI Method accelerates by 700,000 times

FOUR-DIMENSIONAL CCS MODELING WITH AI (FNO) Our AI Method accelerates by 700,000 times

Permeability Heat Map

FOUR-DIMENSIONAL CCS MODELING WITH AI (FNO) Our AI Method accelerates by 700,000 times

Pred, t=10 day

Gas Saturation

FNO for RAPID ADAPTATION TO TURBULENCE

Real-time flow prediction in drones

*Watkins et al., Ten questions concerning the use of drones in urban environments, Building and Environments, 2019

FIRST REAL-TIME FLUID FLOW PREDICTION FNO learns directly from noisy experimental data

RAPID ADAPTATION TO TURBULENT CONDITIONS

	Mean(N)	σ(N)	# of Samples
	0.120	0.158	2.36×10^4
3	0.212	0.233	1.52×10^{5}
	0.208	0.260	NA
	0.904	0.373	1.60×10^{5}
	0.435	0.395	1.60×10^{5}

With our method, the UAV precisely follows an ellipse through two narrow gates in wind.

Front view

OPTIMIZATION CHALLENGES: DETERMINISTIC INITIALIZATION

RANDOM INITIALIZATION IN NEURAL NETWORKS

Requires careful selection of variance of initial weights at different layers

- Variance too high: can lead to gradient explosion.
- Variance too low: can lead to vanishing gradients.
- Need of handcrafted initialization for different architectures (e.g., Xavier, Kaiming, Fixup)
- Batch normalization usually required to stabilize the signal propagation. Weak reproducibility
- Large training variation over repeated experiments with different random seeds
- Interferes with accurate uncertainty quantification

IDENTITY INITIALIZATION

- Identity initialization: Initialize all weight matrices as identity
- But when network layers have different widths:
 - Identity initialization leads to rank constraint during entire training.
 - Rank of all weight matrices is bounded by min(input dimension, all layers except output layer)
- Under identity initialization, increasing width of layers doesn't improve expressivity. Leads to underfitting.

No matter how wide (N_h) the hidden layer is, its rank is always bounded by input dimension $N_x = 784$.

OUR PROPOSAL: ZERO INITIALIZATION

ZerO: Initialize all weights with only zeros and ones

All layers are initialized as identity or Hadamard transforms

Hadamard transform breaks rank constraints of identity initialization

Benefits

- Universally applicable to all architectures
- State-of-art accuracy
- Training ultra deep networks without batch normalization
- Better training reproducibility
- Incremental learning trajectory with low-rank solutions at convergence.

AI FOR CHEMISTRY

AI IS TRANSFORMING DRUG DISCOVERY AI Accurately Predicts Quantum-level Molecular Properties with 1000x Speedup

RESPIRATORY AEROSOL + SARS-COV-2 VIRUS Gordon-Bell Special Prize Finalist

AI IS TRANSFORMING DRUG DISCOVERY

Al accurately predicts quantum-level molecular properties with 1000x speedup

Geometry optimization for Melatonin

Approximation

Traditional

Al is 200 times faster and more accurate

AI (Orbnet)

<u>Respiratory aerosol + SARS-CoV-2 virus</u>

compared to standard methods

AI FOR CHEMISTRY WITH QUANTUM FEATURES

Informatic Representation: SMILES Strings Chemists' Representation: Graphs

CN1C=NC2=C1C(=O)N(C(=O)N2C)C

Transferability

Low

Quantum-mechanical features lead to data efficiency

Physicists' Representation: Orbitals & Quantum Interactions

ORBITAL-BASED FEATURES FOR MOLECULES

Pairwise features: quantum operators evaluated in atomic orbital basis

3D SYMMETRY IN MOLECULES & ORBITALS

Designing neural network equivariant to continuous symmetries in quantum features

QUANTUM CHEMISTRY PREDICTIONS

No loss of accuracy + 1000x speedup relative to traditional methods

State-of-the-art data efficiency

Drug-molecule conformer rankings

RETMOL: RETRIEVAL-BASED FRAMEWORK FOR MOLECULE GENERATION

An example of optimizing the binding affinity for an existing potential drug, Favipiravir, for better treating the COVID-19 virus (SARS-CoV-2 main protease, PDB ID: 7L11) under various other design criteria

It plugs in a retrieval module (i.e., retriever and information fusion) into a pre-trained generative model (i.e., the encoder and decoder)

OPTIMIZING EXISTING DRUGS FOR SARS-COV-2 MAIN PROTEASE

3D visualizations of comparing RetMoI with Graph GA in optimizing the original inhibitor, Bromhexine, that binds to the SARS-CoV-2 main protease

Original (docking score=-9.64)

Graph GA (docking score=-11.83)

RetMol (Ours) (docking score=-12.65)

The optimized inhibitor in RetMol has more polar contacts (red dotted lines) and also more disparate binding modes with the original compound

LANGUAGE-GUIDED MOLECULE EDITING

Editing on Drug Property and Structure-aware Bioactivities

Score: 0.77

LANGUAGE-GUIDED MOLECULE EDITING

Editing on Drug Property and Structure-aware Bioactivities

Table 9:	Similarity	map for	editing	towards	commo
			0		

ground-truth:	Text Prompt: This molecule looks like Penicillin.		Text Prompt: This molecule looks like Penicillin.		
Penicillin	Input Molecule	Output Molecule	Input Molecule	Output Molecule	
CLL Son	HOHHN	A Contraction	HO		
	Tanimoto: 0.23	Tanimoto: 0.32	Tanimoto: 0.16	Tanimoto: 0.27	
ground-truth:	Text Prompt: This molecule looks like Aspirin.		Text Prompt: This molecule looks like Aspirin.		
Aspirin	Input Molecule	Output Molecule	Input Molecule	Output Molecule	
A A A A A A A A A A A A A A A A A A A	HO OH OH		Holen and	Horan Contraction	
	Tanimoto: 0.11	Tanimoto: 0.43	Tanimoto: 0.16	Tanimoto: 0.42	

on molecules.

Quantum optimization

QUANTUM SEMI-DEFINITE PROGRAMMING

SDP: Convex program over symmetric, positive semidefinite matrices

Classical

minimize_{X \in \mathbb{S}^+} \langle W, X \rangle subject to $\langle A_{\mu}, X \rangle = b_{\mu}, \ \forall \mu \leq M$ $X \succeq 0$,

SDP is naturally implemented in quantum systems:

- Density matrices in quantum systems are inherently positive semidefinite.
- Inner products are quantum expectation values.

Quantum

minimize $\langle W, \rho \rangle = \text{minimize} \langle \psi | W | \psi \rangle$ subject to $\langle A_{\mu}, \rho \rangle = b_{\mu}, \ \forall \mu \leq M$ $\rho \succeq 0$ (by definition)

QUANTUM SEMIDEFINITE PROGRAMS

Quantum SDPs hold a lot of promise - solve $O(2^n)$ variables with n qubits. But challenges:

- Gibbs State Sampling: requires a large no. of low-error gates. Far term.
- Existing Variational Q-SDP inefficient: optimizing quantum circuit needs exponentially ulletmany measurements per epoch, as well as auxiliary classical operations.

Ours: Approximate Quantum SDP

- Linear number **O(n)** of measurements.
- Polynomial **O**(**n**²) of expectation values.

HTAAC-QSDP (OUR METHOD) - IN A NUTSHELL

Approximate $O(2^n)$ variable constraints by calculating $O(n^2)$ amplitude constraints (marginal distributions an ensemble).

Encode O(2ⁿ)-variable objective function (e.g., adjacency

Estimate objective function as a single expectation value on the n+1th (auxiliary) qubit with Hadamard Test.

20,000 VERTEX MAXCUT RESULTS WITH NVIDIA CUQUANTUM

- Even though our method is approximate, it is close to exact SDP solver (>96%).
- Our method is efficient: only 15 qubits for 20,000 vertex Maxcut.
- 18x faster with NVIDIA CuQuantum.

CONCLUSION

- Al4science is the future of science
- Principled algorithms for zero-shot generalization
- Operator learning extends neural networks to learning in infinite dimensional spaces
- Orders of magnitude speedup while maintaining accuracy

