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MILLION-X LEAP IN SCIENTIFIC COMPUTING

Al/ML to enable the leap in performance P
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CLIMATE MODELING REQUIRES MILLION-X SPEEDUPS

Computational constraints limit model resolution
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DISCRETIZATION-INVARIANT LEARNING

Input and output at fixed resolution Input and output at any points in domain




DISCRETIZATION-INVARIANCE OF NEURAL OPERATOR

Definition: a trained Al model is discretization-invariant if

®* We can query at any point.
®* Converges upon mesh refinement to a limit.

Mesh refinement
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INTEGRAL OPERATOR FOR SOLVING LINEAR PDE

Input —> Integral Linear Operator —> Qutput

/ w2, ) v(y) dy ey

Kernel of integral operator
For heat diffusion

* |ntegral operator outputs functions (not just finite-dimensional vectors).

 Integral operator is discretization invariant.



NEURAL OPERATOR: A GENERAL FRAMEWORK

Integral
Input —> Linear @ ® Output
Operator

[ e o) dy

 Integral operator outputs functions (not just finite-dimensional vectors).

 Integral operator is discretization invariant.



DISCRETIZATION-INVARIANCE

Model | CNNs | DeepONets | CNNs+Interpolation | Neural Operators
Property
Discretization Invariance X X v v
Query at any point X v v v
Input at any point X X v v
Universal Approximation X v X v

Neural operators are discretization-invariant.
Neural operators are universal approximators in function spaces.



NEURAL OPERATOR: A GENERAL FRAMEWORK

Integral
Input —> Linear @ ® Output
Operator

[ e o) dy

 Integral operator outputs functions (not just finite-dimensional vectors).

 Integral operator is discretization invariant.



FOURIER NEURAL OPERATOR: EFFICIENT FRAMEWORK

Convolution
| — ® ® Output

[ =)ot dy

A

« Special case of integral linear operator: convolution

« Global (continuous) convolution over the domain Filters in CNN
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FOURIER TRANSFORM FOR GLOBAL CONVOLUTION

Integral linear operator / IQ(QZ, y) U(y) dy

Convolution operator

(special case of integral operator) / /{(Qj — y) fu(y) dy

Solving convolution in Fourier domain f_l( f(/{) , f(”U) )
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FNO: FOURIER NEURAL OPERATOR

Convolution
e operator l e

« Convolution = multiplication in frequency domain.

« Learning weights in frequency domain.

« Fourier Transform implements convolution and also discretization invariant.



FOURIER LAYER IN NEURAL OPERATOR

The linear transform W is pointwise operation at each location x that
can help learn residual from Fourier layer, e.g., non-periodic boundary




DEMONSTRATING DISCRETIZATION INVARIANCE OF FNO

Zero-shot super-resolution

Train using coarse resolution data

Directly evaluate on higher resolution (no re-training)

0




FNO: FOURIER NEURAL OPERATOR

Convolution
e operator l e

« Convolution = multiplication in frequency domain.

« Learning weights in frequency domain.

« Fourier Transform implements convolution and also discretization invariant.



OPTIMIZATION OF FOURIER NEURAL OPERATOR

For successful learning, need appropriate selection of

——

Number of frequency modes Pt ~
:F "1 N N N i
N N
. . . A NS NS
Resolution of training data A AP A

Too few frequency modes and low-resolution training data can cause underfitting.

Too many frequency modes can lead to overfitting.

High resolution training data is computationally expensive to obtain and train on.

Proposed: Incrementally augment both frequency modes and training resolution

Is faster to train and better generalization.
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PINO: PHYSICS-INFORMED NEURAL OPERATOR
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PINO: PHYSICS-INFORMED NEURAL OPERATOR

PINO can learn solution operator for a family of equations and fine-tune on an instance

Operator learning Instance-wise finetuning

N D =D




TRANSFER LEARNING WITH PINO

Operator learned on Re100, fine-tune to Re500. Converges 3x faster.




INVERSE PROBLEMS WITH PINO

Inverse problem: given solution of forward simulation, recover input.
PINO makes the inverse prediction more physically valid.
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APPLICATIONS OF FNO



Ground Truth FourCastNet

Our Al (FourCastNet) is 45,000 times faster than current weather models



FOURCASTNET FOR WEATHER PREDICTION

Trained on 10 TB of weather data

Ground Truth FourCastNet

8x higher resolution than any other Al
model for weather forecasting.

45,000x speedup
25000x smaller energy footprint.

1000-member ensemble in a fraction of
a second.

Unparalleled accuracy of surface winds
and precipitation up to one week.

' NVIDIA.



CLIMATE CHANGE MITIGATION: MODELING CO, STORAGE

U-FNO CO? Storage Prediction
Stanford, Caltech, Purdue, NVIRIA



FOUR-DIMENSIONAL CCS MODELING WITH Al (FNO)
Our Al Method accelerates by 700,000 times

Permeability Heat Map



FOUR-DIMENSIONAL CCS MODELING WITH Al (FNO)

Pred, t=10 day

Gas Saturation



FNO for RAPID ADAPTATION TO TURBULENCE
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*Watkins et al., Ten questions concerning the use of
drones in urban environments, Building and Environments,

2019 *Windsor, S.P., Hydrodynamic Imaging by Blind Mexican Cavefish, Flow Sensing in Air and Water, 2014



FIRST REAL-TIME FLUID FLOW PREDICTION

FNO learns directly from noisy experimental data
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RAPID ADAPTATION TO TURBULENT CONDITIONS

— TD3 - SAC = |STM-TD3  =— FALCON
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State-of-the-art stabilization
performance with an order of
maghnitude less samples in
falcon

Method Mean(N) o(N) # of
Samples

FALCON
LSTM-TD3

PID
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With our method, the UAV precisely follows &=
an ellipse through two narrow gates in wind. |
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* «» OPTIMIZATION CHALLENGES:
DETERMINISTIC INITIALIZATION



RANDOM INITIALIZATION IN NEURAL NETWORKS

Requires careful selection of variance of initial weights at different layers
Variance too high: can lead to gradient explosion.
Variance too low: can lead to vanishing gradients.
Need of handcrafted initialization for different architectures (e.g., Xavier, Kaiming, Fixup)
Batch normalization usually required to stabilize the signal propagation.
Weak reproducibility
Large training variation over repeated experiments with different random seeds

Interferes with accurate uncertainty quantification



IDENTITY INITIALIZATION

|ldentity initialization: Initialize all weight matrices as
identity

But when network layers have different widths:

ldentity initialization leads to rank constraint
during entire training.

Rank of all weight matrices is bounded by min(
input dimension, all layers except output layer)

Under identity initialization, increasing width of layers
doesn’t improve expressivity. Leads to underfitting.

Rank
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No matter how wide (N;,) the hidden layer is, its rank
is always bounded by input dimension N, = 784,



ZerQ: Initialize all weights with only zeros and ones

OUR PROPOSAL: ZERO INITIALIZATION

Benefits

All layers are initialized as identity or Hadamard transforms

Hadamard transform breaks rank constraints of identity
initialization
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Universally applicable to all
architectures

State-of-art accuracy

Training ultra deep networks
without batch normalization
Better training reproducibility
Incremental learning trajectory
with low-rank solutions at
convergence.



Al FOR CHEMISTRY



Al IS TRANSFORMING DRUG DISCOVERY

RESPIRATORY AEROSOL + SARS-COV-2 VIRUS

Gordon-Bell Special Prize Finalist




Al IS TRANSFORMING DRUG DISCOVERY

Al accurately predicts quantum-level molecular properties with 1000x speedup

Geometry optimization for Melatonin

Traditional
Approximation

Al
(Orbnet)

Respiratory aerosol + SARS-CoV-2 virus

Orbnet is more precise
compared to standard methods




Al FOR CHEMISTRY WITH QUANTUM FEATURES

Informatic Representation: Chemists’ Representation: P_hysicists’ Representatiop:
SMILES Strings Graphs Orbitals & Quantum Interactions
O
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Transferability _
Low High

uantum-mechanical features lead to data efficienc
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ORBITAL-BASED FEATURES FOR MOLECULES

Pairwise features: quantum operators evaluated in atomic orbital basis

Atomic orbital features of Aspirin

e "

Graph view:
* Nodes - diagonal
feature sub-blocks

« Edges - off-diagonal
feature sub-blocks

Atom pairs are mapped to 60 -
feature matrix sub-blocks e
0 10 20 30 40 50 60

Atomic Orbital ID




3D SYMMETRY IN MOLECULES & ORBITALS

' i Atomi ital feat f Aspiri
Rotating molecule in 3D omic orbital features of Aspirin

Dipole moment (a.u.)

Atomic Orbital ID

0O 10 20 30 40 50 60
Atomic Orbital ID

Designing neural network equivariant to continuous symmetries in quantum features




Test MAE (meV)
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No loss of accuracy + 1000x speedup relative to traditional methods

State-of-the-art data efficiency
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RETMOL: RETRIEVAL-BASED FRAMEWORK FOR MOLECULE GENERATION

Input molecule Input embedding Fused embedding Output molecule
f ﬁ 1 ( OH \
e Information . %
-4.9 keal/mol Encoder : » Decoder —>| Nj:;o
\ Y fusion
A AN
l E \'8'4 kcal/mol 7
Retrieval Retriever ‘ . Shared
database l +weights
@ “\ : S — :

--------- Pre-trained module

S go | T R A :I Retrieval module
AT —bi Encoder E
L s

\_-84keal/mol ~ -103 kealmol ~ -10.9 keal/mol ) T —— 3

Retrieved molecules Retrieved embeddings

An example of optimizing the binding affinity for an existing potential drug, Favipiravir, for better treating the COVID-19 virus
(SARS-CoV-2 main protease, PDB ID: 7L11) under various other design criteria

It plugs in a retrieval module (i.e., retriever and information fusion) into a pre-trained generative
model (i.e., the encoder and decoder)

<A NVIDIA.



OPTIMIZING EXISTING DRUGS FOR SARS-COV-2 MAIN PROTEASE

3D visualizations of comparing RetMol with Graph GA in optimizing the original inhibitor, Bromhexine, that binds to the
SARS-CoV-2 main protease
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The optimized inhibitor in RetMol has more polar contacts (red dotted lines) and also more disparate binding

modes with the original compound SANVIDIA.



LANGUAGE-GUIDED MOLECULE EDITING

This molecule has more
hydrogen bond acceptors.

. l N 7
\ NZ =N
(o}
/N N\ \\ _/
} 0 0

————  Representation @—— N/
encode decode

Latent Optimization

# acceptors: 3 # acceptors: 4

Assay Description for CHEMBL 1613777

This molecule is for assay that are
inhibitors and substrates of an
enzyme protein.

-_— Representation —p |
encode decode NT

Latent Optimization
Score: 0.25 Score: 0.77

NVIDIA.



LANGUAGE-GUIDED MOLECULE EDITING

Editing on Drug Property and Structure-aware Bioactivities

Table 9: Similarity map for editing towards common molecules.

ground-truth: Text Prompt: This molecule looks like Penicillin. Text Prompt: This molecule looks like Penicillin.

Penicillin
Input Molecule Output Molecule [nput Molecule Output Molecule

QY

Tanimoto: 0.23 Tanimoto: 0.32 Tanimoto: 0.16 Tanimoto: 0.27

ground-truth: Text Prompt: This molecule looks like Aspirin. Text Prompt: This molecule looks like Aspirin.
A Input Molecule Output Molecule Input Molecule Output Molecule

Tanimoto: 0.11 Tanimoto: 0.43 Tanimoto: 0.16 Tanimoto: 0.42

< NVIDIA
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QUANTUM SEMI-DEFINITE PROGRAMMING

SDP: Convex program over symmetric, positive semidefinite matrices

Classical Quantum
minimize y g+ (W, X) minimize (W, p) = minimize (|W|¢)
subject to <A,U’X> — b'u, \V/,UJ < M subject to <A,u7 p> — b’u’ Vu < M
X =0, p = 0 (by definition)

SDP is naturally implemented in quantum systems:

« Density matrices in quantum systems are inherently positive semidefinite.

* |nner products are quantum expectation values.

50 <A NVIDIA.



QUANTUM SEMIDEFINITE PROGRAMS

Quantum SDPs hold a lot of promise - solve O(2") variables with n qubits.
But challenges:
» Gibbs State Sampling: requires a large no. of low-error gates. Far term.

 Existing Variational Q-SDP inefficient: optimizing quantum circuit needs exponentially
many measurements per epoch, as well as auxiliary classical operations.

Ours: Approximate Quantum SDP

 Linear number O(n) of measurements.

 Polynomial O(n?) of expectation values.

NVIDIA.



HTAAC-QSDP (OUR METHOD) - IN ANUTSHELL

W ] o I . ° ° ° °
I gw | Encode O(2")-variable objective function (e.g., adjacency
; WO> _ - matrix) as an n-qubit unitary.
I
— Uy Uy or Up Estimate objective function as a single expectation value on
the n+1th (auxiliary) qubit with Hadamard Test.
5 : =
N (A
— Uy 2 Approximate O(2") variable constraints by calculating O(n?)
_ = amplitude constraints (marginal distributions an ensemble).

52 <A NVIDIA.



20,000 VERTEX MAXCUT RESULTS WITH NVIDIA CUQUANTUM

« Even though our method is approximate, it is close to exact SDP solver (>96%).
« Our method is efficient: only 15 qubits for 20,000 vertex Maxcut.

 18x faster with NVIDIA CuQuantum.

100%

50% -

% of optimal SDP solution

3
X

100 100 107
Epochs

53 <A NVIDIA.



CONCLUSION

Al4science is the future of science

Principled algorithms for zero-shot generalization

= Operator learning extends neural networks to learning
in infinite dimensional spaces

= Orders of magnitude speedup while maintaining accuracy




