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Co l l abo r a t o r s + Many Mo re

2

Meghan Frate Juan Pavez

Shirley Ho Irina EspejoTim Head

Miles Cranmer

Julian Urban

Gurtej KanwarPhiala Shanahan William Detmold Dan Hackett

Danilo RezendeMichael Albergo Wahid Bhimji
NERSC, Berkeley Lab

Isaac Henrion

U. Liège

Alvaro Sanchez Gonzalez

SebaFsetilaixnKMlinagcaluso

Denis Boyda

Sébastien Racanière

Peter Battaglia

U. Victoria

Princeton

@HServiansky

Jonathan Shlomi

@HaggaiMaron

Nimrod Segol

Eilam Gross

Nicholas MonathCraig Greenberg
Yaron Lipman

George Papamakarios

Sid Mishra-Sharma

Matthew Drnevich
Fernando 

Romero-Lopez



Phy s i c s and A I /ML i s a ho t a re a

Interaction is often framed in 1 of 2 ways:

• “ML for physics”

• “Physics for ML”
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ML fo r ph y s i c s

A multitude of examples of ML techniques being used to solve physics problems

• off-the-shelf <——————- spectrum ————————> custom solutions
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Phy s i c s f o r ML

Primarily using tools developed for statistical mechanics (e.g. replica trick) and 
quantum field theory (e.g. EFT) to understand the dynamics of deep learning

* Lenka Zdeborova:
Talk: https://ml4physicalsciences.github.io 
Position piece: https://rdcu.be/b4p1m
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Pa s t eu r ' s Quad r an t & Use - i n sp i red re s ea r ch

Distinct from pure basic research and pure applied research is the concept of
use-inspired research.

Donald Stokes, Pasteur's Quadrant
Source: NSF https://www.nsf.gov/mps/ad_blogs/quadrant_august2014.jsp 6
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Pa s t eu r ' s Quad r an t & Use - i n sp i red re s ea r ch

The claim is that foundational advances are often inspired by the context and 
particularities of a specific applied problem setting: “reality is stranger than fiction”

Donald Stokes, Pasteur's Quadrant
Source: NSF https://www.nsf.gov/mps/ad_blogs/quadrant_august2014.jsp 7
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Pa s t eu r ' s Quad r an t & Use - i n sp i red re s ea r ch

Donald Stokes, Pasteur's Quadrant
Source: NSF https://www.nsf.gov/mps/ad_blogs/quadrant_august2014.jsp 8
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Pa s t eu r ' s Quad r an t & Use - i n sp i red re s ea r ch

off-the-shelf ML 
for physics

Donald Stokes, Pasteur's Quadrant
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Pa s t eu r ' s Quad r an t & Use - i n sp i red re s ea r ch

off-the-shelf ML 
for physics

Donald Stokes, Pasteur's Quadrant
Source: NSF https://www.nsf.gov/mps/ad_blogs/quadrant_august2014.jsp 8
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Pa s t eu r ' s Quad r an t & Use - i n sp i red re s ea r ch

Physics-aware / physics-informed incorporate physics concepts into ML model

Donald Stokes, Pasteur's Quadrant
Source: NSF https://www.nsf.gov/mps/ad_blogs/quadrant_august2014.jsp 8
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Pa s t eu r ' s Quad r an t & Use - i n sp i red re s ea r ch

Physics-aware / physics-informed incorporate physics concepts into ML model

Physics-inspired refers to more general techniques inspired by physics use-case

Donald Stokes, Pasteur's Quadrant
Source: NSF https://www.nsf.gov/mps/ad_blogs/quadrant_august2014.jsp 8
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Pa s t eu r ' s Quad r an t & Use - i n sp i red re s ea r ch

The process of developing physics-aware / physics-informed models often 
reveals more general physics-inspired abstractions, observations, and techniques.

Donald Stokes, Pasteur's Quadrant
Source: NSF https://www.nsf.gov/mps/ad_blogs/quadrant_august2014.jsp 9

off-the-shelf ML 
for physics

physics to understand 
theory of deep 

learning physics-aware / 
physics-informed

physics-inspired
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Pa s t eu r ' s Quad r an t & Use - i n sp i red re s ea r ch

Though sometimes physics-inspired techniques come directly from the problem 
setting or formulation and are identified and abstracted early in the process

Donald Stokes, Pasteur's Quadrant
Source: NSF https://www.nsf.gov/mps/ad_blogs/quadrant_august2014.jsp 10

off-the-shelf ML 
for physics

physics to understand 
theory of deep 

learning physics-aware / 
physics-informed

physics-inspired
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Take away

In addition to the personal joy and benefits to society of both basic and applied research, there 
is great value in exporting general purpose techniques and insight

• An intellectual form of “technology transfer”

• It behooves the field of physics to do this deliberately

• May require adopting unfamiliar language, avoiding physics jargon, etc.

• May require publishing in unfamiliar venues & recognizing value of those publications

• Effective abstractions may not capture all aspects of the initial physics problem

• Aids in building collaborations with methodological researchers

• Avoids siloing & stagnation

• Facilitates importing good ideas from other fields

• Bolsters the real and perceived value of funding physics research
11



Impedance matching 
with the ML community



Traditional approaches in physics
• hand-crafted data analysis
•largely guided by expert knowledge 
and theoretical insights



Big Data & Deep Learning
• eschew feature engineering
• end-to-end learning
• data-driven





All models are wrong,
and increasingly you can succeed without them.

— Peter Norvig



Hybrid approaches

•Some push back in the AI / ML community on data 
hungry end-to-end approaches

•Increased appreciation in the value of domain 
knowledge and “inductive bias”



Phy s i c a l Rea son i ng Wor k s hop de s c r i p t i on

Much progress has been made on end-to-end learning for physical understanding and reasoning. If successful, 
understanding and reasoning about the physical world promises far-reaching applications in robotics, 
machine vision, and the physical sciences. Despite this recent progress, our best artificial systems pale in 
comparison to the flexibility and generalization of human physical reasoning.

Our workshop aims to investigate this broad questions:

• 1. What forms of inductive biases best enable the development of physical understanding techniques that 
are applicable to real-world problems?

• 2. How do we ensure that the outputs of a physical reasoning module are reasonable and physically 
plausible?

• 3. Is interpretability a necessity for physical understanding and reasoning techniques to be suitable to real-
world problems?

Unlike end-to-end neural architectures that distribute bias across a large set of parameters, modern 
structured physical reasoning modules (differentiable physics, relational learning, probabilistic programming) 
maintain modularity and physical interpretability. We will discuss how these inductive biases might aid in 
generalization and interpretability, and how these techniques impact real-world problems.

18

physical-reasoning.github.io



Peter Battaglia
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The brown 
dog jumped. The

brown dog

jumped

(a) (b)

(c) (d)

(e) (f)

Molecule Mass-Spring System

n-body System Rigid Body System

Sentence and Parse Tree Image and Fully-Connected Scene Graph

Insight of data generating process informs 
inductive bias on architecture

Image credit: Battaglia, et. al. arXiv:1806.01261



Yoshua Bengio on [arXiv:1901.10912] 
and public FB discussion



percept

action

Actor

World Model

Intrinsic  
cost

Perception

Short-term  
memory

configurator

Critic
Cost

Wor l d Mode l s

•Model for animal-like intelligence

• Somewhat like RL with sequential 
decision making in real world, but …

• Importance of “world model” to predict 
potential outcomes of candidate actions

• World model used for planning & control

22

Figure from Yann LeCun



Inductive Bias 
Compositionality  

Relationships 
Symmetry 
Causality



Hybrid “physics-aware” approaches to AI / ML

• inject knowledge of data generating 
process into inductive bias of ML models

•use “black box” style ML components to model the
most uncertain aspects of problem where traditional
approaches make overly restrictive assumptions

•align architectural components of ML models with 
causal mechanism



An example of physics-aware ML



JETS
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Je t Image s
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Deep learning algorithms first applied (~2015) to “jet images” for a binary classification task

• based on idealized uniform detector

• ~off-the-shelf use of convolutional neural networks at first

Average Boosted W Jet Average QCD Jet

Oliveira, et. al arXiv:1511.05190 
Whiteson, et al arXiv:1603.09349 

Barnard, et al arXiv:1609.00607
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The image rep re s en t a t i on i s spa r s e
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Typical QCD Jet

← point clouds→



Non -un i f o rm geome t r y
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Non -un i f o rm geome t r y
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F rom image s t o Sen t ence s ( ~2016 )

Recursive Neural Networks showing great performance for Natural Language Processing tasks

• neural network’s topology given by parsing of sentence!

31



F rom image s t o Sen t ence s ( ~2016 )

Recursive Neural Networks showing great performance for Natural Language Processing tasks

• neural network’s topology given by parsing of sentence!

Analogy:
word → particle 
parsing→ jet algorithm

31



QCD- i n sp i red Recu r s i v e Neu r a l Ne two r k s ( ~2016 )

32

Work with Gilles Louppe, Kyunghyun Cho, Cyril Becot in 2017

• Use jet clustering algorithms to dynamically provide 
network connectivity (on a per-jet basis)

• Early example of physics-aware ML

kt 

(α=1)
anti-kt  

(α=1)

arXiv:1702.00748 & follow up work with Joan Bruna using graph conv nets



Je t s a s a g r aph
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Each node of the graph is a particle

• edge length motivated by physics, same as used for clustering algorithms:

• we can visualize one jet via the dii’ adjacency matrix

• adjacency matrix changes continuously with and features (momenta of particles)

C/A algorithm with α=0

i

i’dii’

i

i’



Deep Se t s ( a nd Po i n tNe t s )

With permutation invariance as a motivation, physicists picked up on Deep Sets 
architecture. With different input features these are known as “Energy Flow
Networks” and “Particle Flow Networks”

• Choice of input features enforces 
other properties of resulting network 
important for physicists

..
. 

..
. 

..
. 

Particles Observable

Per-Particle Representation Event Representation

F

Energy/Particle Flow Network

Latent Space
Deep Sets

Manzil Zaheer1!2, Satwik Kottur1, Siamak Ravanbhakhsh1, 
Barnabás Póczos1, Ruslan Salakhutdinov1, Alexander J Smola1!2

1 Carnegie Mellon University 2 Amazon Web Services
{manzilz,skottur,mravanba,bapoczos,rsalakhu,smola}@cs.cmu.edu

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

Charles R. Qi* Leonidas J. GuibasHao Su* Kaichun Mo 
Stanford University

Energy Flow Networks: Deep Sets for Particle Jets

Patrick T. Komiske, Eric M. Metodiev, and Jesse Thaler
Center for Theoretical Physics, Massachusetts Institute of Technology, 
77 Massachusetts Avenue, Cambridge, M A 02139, U.S.A.

Department of Physics, Harvard University,
17 Oxford Street, Cambridge, M A 02138, U.S.A.
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Phy s i c s - awa re ML fo r j e t s

In the last few years a lot of work on physics-aware ML for jets

Machine Learning for Jet Physics Workshops, January 2020, shortly before the pandemic

Graph Neural Networks in Particle Physics

Jonathan Shlomi1, Peter Battaglia2, Jean-Roch Vlimant3

! !"#$%&'' (')*#*+*" ,- ./#"'/"0 1"2,3,*0 ()4&"5
" 6""78#'90 :,'9,' ;<
# =&5#-,4'#& (')*#*+*" ,- >"/2',5,?@0 A8B0 A&)&9"'&0 =B0 ;.B CDDEFGHHHE
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Compa r i s on f o r b i n a r y c l a s s i f i c a t i on benchma r k
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• Huge range in number of parameters

• Dynamic Graph CNN best performing

• Noticeable performance gap for DeepSets

• TreeRNN doing very well, tiny network in comparison (also train with little data)

• Image-based CNNs do well, but are huge

• Message Passing Networks or Graph Attention Networks not evaluated in this comparison
1/False Positive Rate

“Images” CNN

Tree RNN 
Dynamic Graph CNN

DeepSets



An example of physics-inspired ML



Use i n sp i red

38

Peculiarities of the particle physics context:

• Point cloud with permutation symmetry and underlying geometric structure

Maybe there are alternate universes in the multiverse where deep set architecture 
and graph neural networks emerged from physics-inspired use case

• It didn’t quite play out like that

But this next one did…



App l i c a t i on t o Pa r t i c l e ph y s i c s

Task: group together particles according to common point of origin

• Accuracy is a bottle neck in several searches for new physics

Serviansky, et. al. [arXiv:2002.08772]

39

https://arxiv.org/abs/2002.08772


Se t t o (Hype r- )G r aph Func t i on s Serviansky, et. al. [arXiv:2002.08772]
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Se t t o (Hype r- )G r aph Func t i on s Serviansky, et. al. [arXiv:2002.08772]
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Hype rg r aph s a s t en so r s

X E IRn×d

41

X E IRn×n×d X E IRn3×d

Serviansky, et. al. [arXiv:2002.08772]

https://arxiv.org/abs/2002.08772


Examp l e

Delaunay triangulation:

• Input: 2d points as a set

42



Examp l e

Delaunay triangulation:

• Input: 2d points as a set

• Output: the Delaunay triangulation (graph)

42



Set2Graph: Learning Graphs 
from Sets

Hadar Serviansky1 Nimrod Segol1 Jonathan Shlomi1 Kyle Cranmer2
Eilam Gross1 Haggai Maron3 Yaron Lipman1

1 2 3

https://arxiv.org/abs/2002.08772 ICML2020

https://arxiv.org/abs/2002.08772


Mode l : S e t 2G r aph

F(X; ) = (X)
Serviansky, et. al. [arXiv:2002.08772]

Theorem: Set2Graph model is set-to-graph universal.
44

https://arxiv.org/abs/2002.08772


Mode l : S e t 2G r aph

F(X; ) = (X)
Serviansky, et. al. [arXiv:2002.08772]

Theorem: Set2Graph model is set-to-graph universal.
44

https://arxiv.org/abs/2002.08772


Mode l : S e t 2G r aph

F(X; ) = (X)
Serviansky, et. al. [arXiv:2002.08772]

Theorem: Set2Graph model is set-to-graph universal.
44

https://arxiv.org/abs/2002.08772


Mode l : S e t 2G r aph

F(X; ) = (X)
Serviansky, et. al. [arXiv:2002.08772]

DeepSets

Theorem: Set2Graph model is set-to-graph universal.
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Mode l : S e t 2G r aph

F(X; ) = (X)
Serviansky, et. al. [arXiv:2002.08772]

DeepSets

Theorem: Set2Graph model is set-to-graph universal.
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Mode l : S e t 2G r aph

F(X; ) = (X)
Serviansky, et. al. [arXiv:2002.08772]

DeepSets
(not learned) 

Broadcasting layer

Theorem: Set2Graph model is set-to-graph universal.
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F(X; ) = (X)
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DeepSets
(not learned) 

Broadcasting layer

Theorem: Set2Graph model is set-to-graph universal.
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Mode l : S e t 2G r aph

F(X; ) = (X)
Serviansky, et. al. [arXiv:2002.08772]

DeepSets
(not learned) 

Broadcasting layer
Element-wise  
non-linearity

Theorem: Set2Graph model is set-to-graph universal.
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App l i c a t i on t o Pa r t i c l e ph y s i c s

Task: group together particles according to common point of origin

• Accuracy is a bottle neck in several searches for new physics

Serviansky, et. al. [arXiv:2002.08772]
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Examples of Physics-inspired ML



F rom Phy s i c s t o Fa i r ne s s

Physics motivation: desire to be robust to systematic uncertainty in experimental 
particle physics measurements that use machine learning

Physics-inspired technique: “learning to pivot with adversarial networks”
• introduce an adversary r that tries to predict nuisance parameter based on classifier output f

47
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F rom Phy s i c s t o Fa i r ne s s

Physics motivation: desire to be robust to systematic uncertainty in experimental 
particle physics measurements that use machine learning

Physics-inspired technique: “learning to pivot

Impact: connection to domain adaptation, algorithmic fairness, privacy, and encryption 
Mentioned in Leon Bottou’s 2019 ICML keynote on Invariant Risk Minimization

48
Stijn Tonk, 27 April, 2018
https://godatadriven.com/blog/towards-fairness-in-ml-with-adversarial-networks/



Examples of Physics-inspired ML
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S imu l a t i n g pa r t i c l e ph y s i c s p ro c e s s e s
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[F. Krauss]
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Sample from
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S imu l a t i n g pa r t i c l e ph y s i c s p ro c e s s e s
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It’s infeasible to calculate the  
integral over this enormous space!

Inference
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10 ⁸ s en so r s → s umma r y s t a t i s t i c

Most measurements and searches for new particles at the LHC are based on the distribution of a single
summary statistic

• choosing a good summary statistic s(x (feature engineering) is a task for a skilled physicist and tailored 
to the goal of measurement or new particle search

• likelihood p(s   ) approximated using histograms or kernel density estimation [Similar to Diggle & Gratton (1984)]
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10 ⁸ s en so r s → s umma r y s t a t i s t i c

Most measurements and searches for new particles at the LHC are based on the distribution of a single
summary statistic

• choosing a good summary statistic s(x (feature engineering) is a task for a skilled physicist and tailored 
to the goal of measurement or new particle search

• likelihood p(s   ) approximated using histograms or kernel density estimation

This doesn’t scale if summary is high dimensional!
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[Similar to Diggle & Gratton (1984)]



Lea r n i ng t he l i k e l i hood r a t i o
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Machine Learning
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augmented data

arXiv:1805.12244
PRL, arXiv:1805.00013
PRD, arXiv:1805.00020

physics.aps.org/articles/v11/90

Dedicated software package interfacing with particle physics simulators: 
github.com/johannbrehmer/madminer

https://physics.aps.org/articles/v11/90
http://github.com/johannbrehmer/madminer


Lea r n i ng t he l i k e l i hood r a t i o
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Impac t on S t ud i e s o f The H igg s Boson

Massive gains in precision of a flagship measurement at the LHC ! 

Equivalent increasing data collected by LHC by several factors
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A common t heme , a common l anguage
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A re v i ew

57

Published in Proceedings of the National Academy of Sciences

The frontier of simulation-based inference
Kyle Cranmera,b,1, Johann Brehmera,b, and Gilles Louppec

aCenter for Cosmology and Particle Physics, New York University, USA; bCenter for Data Science, New York University, USA; cMontefiore Institute, University of Liège, Belgium 

April 3, 2020

[Cranmer, Brehmer, Louppe PNAS (2020), arXiv:1911.01429 ]
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Compu t a t i ona l Neu ro s c i en ce

From Jakob Macke’s group that developed 
the sbi python package

58

Training deep neural density estimators
to identify mechanistic models of neural
dynamics
Pedro J Gonc¸alves1,2†*, Jan-Matthis Lueckmann1,2†*, Michael Deistler1,3†*, 
Marcel Nonnenmacher1,2,4, Kaan Öcal2,5, Giacomo Bassetto1,2,
Chaitanya Chintaluri6,7, William F Podlaski6, Sara A Haddad8, Tim P Vogels6,7, 
David S Greenberg1,4, Jakob H Macke1,2,3,9*

1Computational Neuroengineering, Department of Electrical and Computer 
Engineering, Technical University of Munich, Munich, Germany; 2Max Planck 
Research Group Neural Systems Analysis, Center of Advanced European Studies 
and Research (caesar), Bonn, Germany; 3Machine Learning in Science, Excellence 
Cluster Machine Learning, Tü bingen University, Tü bingen, Germany; 4Model-Driven 
Machine Learning, Institute of Coastal Research, Helmholtz Centre Geesthacht, 
Geesthacht, Germany; 5Mathematical Institute, University of Bonn, Bonn, Germany; 
6Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, United 
Kingdom; 7Institute of Science and Technology Austria, Klosterneuburg, Austria; 
8Max Planck Institute for Brain Research, Frankfurt, Germany; 9Max Planck Institute
for Intelligent Systems, Tübingen, Germany

Abstract Mechanistic modeling in neuroscience aims to explain observed phenomena in terms 
of underlying causes. However, determining which model parameters agree with complex and 
stochastic neural data presents a significant challenge. We address this challenge with a machine
learning tool which uses deep neural density estimators—trained using model simulations—to carry 
out Bayesian inference and retrieve the full space of parameters compatible with raw data or 
selected data features. Our method is scalable in parameters and data features and can rapidly 
analyze new data after initial training. We demonstrate the power and flexibility of our approach on 
receptive fields, ion channels, and Hodgkin–Huxley models. We also characterize the space of 
circuit configurations giving rise to rhythmic activity in the crustacean stomatogastric ganglion, and 
use these results to derive hypotheses for underlying compensation mechanisms. Our approach will 
help close the gap between data-driven and theory-driven models of neural dynamics.
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Da r k Ma t t e r Sub s t r u c t u re

Many DM models predict differences from ΛCDM at small length scales

Abundance of DM subhalos with low mass is sensitive to DM mass, decoupling 
pattern, self-interactions…

[T.Brown, J.Tumlinson] 60
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Abundance of DM subhalos vsmass:



Pos t e r i o r f rom amo r t i z ed l i k e l i hood r a t i o

Watch how the posterior for two population 
parameters concentrate around true value used 
to generate mock data.

(plotted slightly differently)
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Gra v i t a t i ona l Wave As t ronomy

62
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Lightning-Fast Gravitational Wave Parameter 
Inference through Neural Amortization

Delaunoy, Wehenkel, Hinderer, Nissanke, Weniger, Williamson, Louppe 
[arXiv:2010.12931]

Speed is a concern if we want to use this to quickly 
point telescopes to look for optical counterpart



Two o t he r re cen t e x amp l e s

Both works use spherical CNN to process maps of the sky into relevant summaries

Right: data distribution is a mixture and coefficients are parameters of interest.
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Spherical convolutions with progressive coarsening Global average pooling + fully-connected

[arXiv:2110.01620]
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Inferring dark matter substructure with 
astrometric lensing beyond the power spectrum

Siddharth Mishra-Sharma
The NSF AI Institute for Artificial Intelligence and Fundamental Interactions 

Massachusetts Institute of Technology
Harvard University

New York University
smsharma@mit.edu

A neural simulation-based inference approach for characterizing 
the Galactic Center 1-ray excess
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Sid Mishra-Sharma
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Two app roa che s s imu l a t i on - ba sed i n f e ren ce

64

Use simulator
(much more efficiently)

Learn simulator
(with deep learning)

• Likelihood ratio trick (with classifiers)

• Conditional density estimate 
(with normalizing flows)

• Learned summary statistics

[image credit: A.P. Goucher]

• Approximate Bayesian Computation (ABC)

• Probabilistic Programming

• Adversarial Variational Optimization

https://cp4space.wordpress.com/2016/02/06/deep-learning-with-the-analytical-engine/


Previously had to use a special purpose probabilistic programming language. 
With ppx protocol, we decouple inference engine & control existing simulator.

65

G. Baydin, et al SC19 arXiv:1907.03382
G. Baydin, et al. NeurIPS 2019 arXiv:1807.07706

• Augment real-world physics simulator
(C++, 1M lines of code)

• 3DCNN-LSTM architecture for !!"# |$%
(Stack traces with Dim[ ] ranging from 100 — 2,000)

• Inference is embarrassingly parallelizable 
unlike MCMC. 230x speedup
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Ep idem io l ogy & popu l a t i on Gene t i c s
Simulation-Based Inference for Global Health Decisions

66

Simulation-Based Inference for Global Health Decisions
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Figure 1: Latent probabilistic structure uncovered using PyProb from the Imperial College CovidSim simulator run on Malta, 
demonstrating the first step in working with this simulator as a probabilistic program. Uniform distributions are omitted for simplicity.

https://arxiv.org/abs/1905.12432

Hijacking Malaria Simulators with Probabilistic Programming

Bradley J. Gram-Hansen *1 Christian Schro¨der de Witt *1

Tom Rainforth 2 Philip H.S. Torr 1  Yee Whye Teh 2  Atılım Gü neş Baydin 1

PLANNING AS INFERENCE
IN EPIDEMIOLOGICAL DYNAMICS MODELS

A PREPRINT

Frank Wood1,3,4, Andrew Warrington2, Saeid Naderiparizi1, Christian Weilbach1, Vaden Masrani1, 
William Harvey1, Adam S´cibior1, Boyan Beronov1, and Ali Nasseri1

1Department of Computer Science, University of British Columbia 
2Department of Engineering Science, University of Oxford 

3MILA
4CIFAR AI Chair

{fwood,awarring,saeidnp,weilbach,vadmas,wsgh,ascibior,beronov}@cs.ubc.ca, ali.nasseri@ubc.ca

https://arxiv.org/abs/2003.13221

Christian Schroeder de Witt 1 Bradley Gram-Hansen 1 Nantas Nardelli 1 

Andrew Gambardella 1   Rob Zinkov 1   Puneet Dokania 1   N. Siddharth 1

Ana Belen Espinosa-Gonzalez 2   Ara Darzi 2   Philip Torr 1   Atılım Güneş Baydin 1

https://arxiv.org/abs/2005.07062
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Examples of Physics-inspired ML



Causa l , Gene r a t i v e Mode l Fo r J e t s
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Causa l , Gene r a t i v e Mode l Fo r J e t s

z
Evolution of the tree is latent
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Causa l , Gene r a t i v e Mode l Fo r J e t s
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We only observe the leaves

p(tree ) = I
Inodes

p(split, left, right parent, )energy & momentum is conserved at each splitting

xz
Evolution of the tree is latent



Je t C l u s t e r i ng

Traditionally, physicists try to “reconstruct” the latent tree from observed

• Hierarchical clustering can be seen as inverting the generative process

• Standard techniques use bottom-up / greedy / agglomerative clustering HAC

• Similarity measure is motivated by underlying physics: QCD, relativity, etc.
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Impac t o f c l u s t e r i ng on downs t re am t a s k s

Optimal solutions for many down-stream tasks would be ~trivial if an oracle could give us 
the correct / ground-truth tree, but

• Several trees could potentially lead to the same set of leaves, so we need to think 
probabilistically if we want to work directly with shower model p(x, z )

Alternatively, we can use machine learning to learn functions related to the marginal 

distribution p(x ) = p(x, z )dz.
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Tre l l i s

The number of trees (hierarchical clusterings) is enormous!

• It grows like 2N − 3)! where N is the number of jet constituents

• and there are 2N−1 permutations of )

Table 1

# of leaves Approx. # of trees

4 15
5 100
7 10 K
9 2 M
11 600 M
150 10300

Ginkgo
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Tre l l i s

The number of trees (hierarchical clusterings) is enormous!

• It grows like 2N − 3)! where N is the number of jet constituents

• and there are 2N−1 permutations of )

The trellis is a data structure and dynamic programming algorithm that 
allows us to efficiently carry out this sum or find zA= arg max p(z x, )

z

Table 1
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Sea rch i ng f o r t he MAP t ree / Comb i na t o r i a l op t im i z a t i on

We find the exact MAP tree for up to 16 jet constituents: zMAP = arg max p(z x, )
z

• We explored Monte Carlo Tree Search, other RL algs, approximate sparse trellis 
algorithms, and a novel A* search algorithm that uses the trellis

• Our approx. algorithms greatly improve over greedy and beam search baselines.

Table 1

# of leaves Approx. # of trees

4 15
5 100
7 10 K
9 2 M
11 600 M
16 1016

150 10300
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Lower is better!



Unexpec t ed app l i c a t i on s

These physics-inspired algorithms are relevant for genomics, phylogenetic trees 
and networks
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An I PAM wo r k s hop

Highly recommended:
http://www.ipam.ucla.edu/programs/workshops/deep-learning-and-combinatorial-optimization/

Further insight

If you would like to know more details about constructing good processor networks:

https:/ /www.youtube.com/watch?v=IPQ6CPoluok
ht t ps : / / dr i v e . g o o g l e . c o m/ f i l e / d / l _ E Q9 Yu7 VE kv r  

HaVHl_WbT5ABvxrSNY-s/view?usp=sharing

Want to know more?

Our 43-page survey on GNNs for CO!

h t t p s : / / a r x i v . o r g / a b s / 2 1 0 2 . 0 9 5 4 4

Section 3.3. details algorithmic reasoning, 
with comprehensive references.
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A lgo r i t hm i c A l i gnmen t http://www.ipam.ucla.edu/abstract/?tid=16710&pcode=DLC2021

Stefanie Jegelka’s talk at IPAM workshop on Deep Learning and Combinatorial Optimization
75

http://www.ipam.ucla.edu/abstract/?tid=16710&pcode=DLC2021


A lgo r i t hm i c A l i gnmen t

Stefanie Jegelka’s talk at IPAM workshop on Deep Learning and Combinatorial Optimization
76

http://www.ipam.ucla.edu/abstract/?tid=16710&pcode=DLC2021
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A lgo r i t hm i c A l i gnmen t

Stefanie Jegelka’s talk at IPAM workshop on Deep Learning and Combinatorial Optimization
77

http://www.ipam.ucla.edu/abstract/?tid=16710&pcode=DLC2021

Deep Sets with sum aggregation will have problems

http://www.ipam.ucla.edu/abstract/?tid=16710&pcode=DLC2021


A lgo r i t hm i c A l i gnmen t

Stefanie Jegelka’s talk at IPAM workshop on Deep Learning and Combinatorial Optimization
78

http://www.ipam.ucla.edu/abstract/?tid=16710&pcode=DLC2021

http://www.ipam.ucla.edu/abstract/?tid=16710&pcode=DLC2021


We can aggregate the sum for DeepSets hierarchically if we 
want, so DeepSets has a TreeRNN like architecture

• A “tree catamorphism” https://blog.ploeh.dk/2019/04/29/catamorphisms/ ρ

+

Φ Φ

+

+

Φ Φ

+

x 1 x 2 x 3 x 4 x 1 x 2 x 3 x 4
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Examples of Physics-inspired ML



Mon te Ca r l o

81

Famous case of physics-inspired “ML”

• Stanislaw Ulam invented the modern version of the Markov Chain Monte Carlo 
method while he was working on nuclear weapons projects at the Los Alamos National 
Laboratory in the 1940s

• Metropolis–Hastings - Equation of State Calculations by Fast Computing Machines by
Nicholas Metropolis, Arianna W. Rosenbluth, Marshall Rosenbluth, Augusta Teller and
Edward Teller.

• Hamiltonian (Hybrid) MC - originally proposed by Simon Duane, Anthony Kennedy, 
Brian Pendleton and Duncan Roweth in 1987 for calculations in lattice quantum 
chromodynamics.

•… many more approaches developed for molecular dynamics, quantum systems, etc. 

Current development: flow-based sampling strategies



Variational Inference also has its origin in physics 
(Free energy, reverse KL divergence, ELBO)

Communities discovered in a 3.7M node network of U.S. Patents

[Gopalan and Blei PNAS 2013]

Population analysis of 2 billion genetic measurements

[Gopalan+ Nature Genetics 2016]

Analysis of 1.7M taxi trajectories, in Stan

[Kucukelbir+ JMLR 2016]

Analysis of 2M declassified cables from the State Dept

[Chaney+ EMNLP 2016]

Neuroscience analysis of 220 million fMRI measurements

[Manning+ PLOS ONE 2014]

Variational inference

!" .q .zI#* / jj p .z j x/ /

!init

p .z j x/

!*q.zI!/

I VI solves inference with optimization.
I Posit a variational family of distributions over the latent variables.
I Fit the variational parameters *to be close (in KL) to the exact posterior.

qL .*/ D E Œlog p .z/çC
P n  

iD 1 Eq Œlog p .x i j z/ç Eq Œlog q .zI*/ç

I KL is intractable; VI optimizes the evidence lower bound (ELBO) instead.

I Two ways to form noisy gradients with Monte Carlo:
– Sample from q. /; no need to take expectations
– Subsample from the data; no need to process all data

I This leads to scalable and generic variational inference.

Slides from David Blei
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La t t i c e F i e l d Theo r y

Very expensive simulations with high dimensional data: eg. x∈ ℝ10⁹

Use normalizing flow to approximate target distribution of configurations that is 
implied by the action S(x via the Boltzmann Equation p(x) = e−S(x)/Z
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F l ows f o r LQCD

Flow-based generative models for Markov chain Monte Carlo in lattice field theory

"# $# %&'()*+,1, 2, 3 -# ./01/),4 /02 3# 4# $5/0/5/04, 1

1Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
2Cavendish Laboratories, University of Cambridge, Cambridge CB3 0HE, U.K.

3University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
4Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.

A Markov chain update scheme using a machine-learned flow-based generative model is proposed
for Monte Carlo sampling in lattice field theories. The generative model may be optimized (trained)
to produce samples from a distribution approximating the desired Boltzmann distribution deter-
mined by the lattice action of the theory being studied. Training the model systematically improves
autocorrelation times in the Markov chain, even in regions of parameter space where standard
Markov chain Monte Carlo algorithms exhibit critical slowing down in producing decorrelated up-
dates. Moreover, the model may be trained without existing samples from the desired distribution.
The algorithm is compared with HMC and local Metropolis sampling for ¢4 theory in two dimen-
sions.

Albergo, Kanwar, Shanahan, PRD (2019) arXiv:1904.12072
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F l ows f o r mo l e cu l a r d ynam i c s

RESEARCH ARTICLE SUMMARY

MACHINE LEARNING

Boltzmann generators: Sampling
equilibrium states of many-body
systems with deep learning
Frank Noé*†, Simon Olsson*, Jonas Köhler* , Hao Wu

RESEARCH
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The main approach is thus to start with one
configuration, e.g., the folded protein state, and
make tiny changes to it over time, e.g., by using
Markov-chain Monte Carlo or molecular dy-
namics (MD). However, these simulations get
trapped in metastable (long-lived) states: For
example, sampling a single folding or unfold-
ing event with atomistic MD may take a year
on a supercomputer.

Noé et al., Science 365, 1001 (2019) 6 September 2019

Boltzmann generators overcome sampling
problems between long-lived states. The
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I n co rpo r a t i ng s ymme t r i e s

The action is invariant to gauge transformations, so the distribution is constant in 
those directions

• Architectures that don’t bake in symmetry totally fail

• We’ve developed normalizing flow models that impose symmetry, and it works!

Gauge invariant Pur
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Kanwar, Albergo, Boyda, Cranmer, Hackett, Racaniere, Rezende, Urban, Shanahan
arXiv:2002.02428, 2003:06413, 2106.05934, 2008.05456
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Space - t ime & Loca l Gauge Symme t r y
Kanwar, Albergo, Boyda, Cranmer, Hackett, Racaniere, 

Rezende, Shanahan arXiv:2002.02428 & arXiv:2003:06413
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F l ows on Sphe re s and To r i

Along the way, we designed flows on compact manifolds like Spheres and Tori 
that correspond to Lie groups:

[arXiv:2002.02428, ICML2020]
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Along the way, we designed flows on compact manifolds like Spheres and Tori 
that correspond to Lie groups:

[arXiv:2002.02428, ICML2020]

RELE VANT FOR 
R O B O T I C S WHERE

C O N F I G U R AT I O N S PA C E 
OF R O B O T I C ARM

IS AN N-D IM T O R U S !
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– R ICH SUTTON

The bitter lesson



The b i t t e r l e s s on

90

The biggest lesson that can be read from 70 years of AI research is that general methods that leverage computation 
are ultimately the most effective, and by a large margin.

• The ultimate reason for this is Moore's law, or rather its generalization of continued exponentially falling cost per 
unit of computation.

• Most AI research has been conducted as if the computation available to the agent were constant (in which case 
leveraging human knowledge would be one of the only ways to improve performance) but, over a slightly longer 
time than a typical research project, massively more computation inevitably becomes available.

• Seeking an improvement that makes a difference in the shorter term, researchers seek to leverage their human 
knowledge of the domain, but the only thing that matters in the long run is the leveraging of computation.

• These two need not run counter to each other, but in practice they tend to. Time spent on one is time not spent 
on the other. There are psychological commitments to investment in one approach or the other.

• And the human-knowledge approach tends to complicate methods in ways that make them less suited to 
taking advantage of general methods leveraging computation.

• There were many examples of AI researchers' belated learning of this bitter lesson, and it is instructive to review 
some of the most prominent.

Sutton 2019 http://www.incompleteideas.net/IncIdeas/BitterLesson.html

http://www.incompleteideas.net/IncIdeas/BitterLesson.html


The b i t t e r l e s s on
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This is a big lesson. As a field, we still have not thoroughly learned it, as we are continuing to 
make the same kind of mistakes. To see this, and to effectively resist it, we have to 
understand the appeal of these mistakes. We have to learn the bitter lesson that building 
in how we think we think does not work in the long run.

The bitter lesson is based on the historical observations that

• 1) AI researchers have often tried to build knowledge into their agents,

• 2) this always helps in the short term, and is personally satisfying to the researcher, but

• 3) in the long run it plateaus and even inhibits further progress, and

• 4) breakthrough progress eventually arrives by an opposing approach based on scaling 
computation by search and learning.

The eventual success is tinged with bitterness, and often incompletely digested, 
because it is success over a favored, human-centric approach.

Sutton 2019 http://www.incompleteideas.net/IncIdeas/BitterLesson.html

http://www.incompleteideas.net/IncIdeas/BitterLesson.html


The b i t t e r l e s s on
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One thing that should be learned from the bitter lesson is the great power of general purpose 
methods, of methods that continue to scale with increased computation even as the available 
computation becomes very great. The two methods that seem to scale arbitrarily in this way are 
search and learning.

The second general point to be learned from the bitter lesson is that the actual contents of minds 
are tremendously, irredeemably complex; we should stop trying to find simple ways to think 
about the contents of minds, such as simple ways to think about space, objects, multiple 
agents, or symmetries. All these are part of the arbitrary, intrinsically-complex, outside world. They 
are not what should be built in, as their complexity is endless; instead we should build in only the 
meta-methods that can find and capture this arbitrary complexity. Essential to these methods is that 
they can find good approximations, but the search for them should be by our methods, not by us.
We want AI agents that can discover like we can, not which contain what we have discovered. 
Building in our discoveries only makes it harder to see how the discovering process can be 
done.

Sutton 2019 http://www.incompleteideas.net/IncIdeas/BitterLesson.html

http://www.incompleteideas.net/IncIdeas/BitterLesson.html


Phy s i c s - i n sp i r ed wo r k impac t i ng t he deba t e
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Take away

94

In addition to the personal joy and benefits to society of both basic and applied research, there 
is great value in exporting general purpose techniques and insight

• An intellectual form of “technology transfer”

• It behooves the field of physics to do this deliberately

• May require adopting unfamiliar language, avoiding physics jargon, etc.

• May require publishing in unfamiliar venues & recognizing value of those publications

• Effective abstractions may not capture all aspects of the initial physics problem

• Aids in building collaborations with methodological researchers

• Avoids siloing & stagnation

• Facilitates importing good ideas from other fields

• Bolsters the real and perceived value of funding physics research


