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ML for Analyzing Big Image Data in Neutrino Experiments
Neutrinos

Neutrinos
(weakly interacting slim ghosts)

Fermi, E. Tentativo di una Teoria Dei 
Raggi β. Nuovo Cim 11, 1 (1934)

https://link.springer.com/article/10.1007%2FBF02959820#citeas
https://link.springer.com/article/10.1007%2FBF02959820#citeas


Neutrinos
are produced 

everywhere = natural 
physics messengers 
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Neutrinos



The “empty” space is filled with 

100/cm3 relic neutrinos 
produced 0.2 second after Big Bang

Neutrinos
are the most 

abandoned matter 
particles we know in 

the universe

ML for Analyzing Big Image Data in Neutrino Experiments
Neutrinos



Neutrinos
are the most 

abandoned matter 
particles we know in 

the universe
100 billion 
neutrinos from the 
Sun pass through 
your thumbnail 
every second

ML for Analyzing Big Image Data in Neutrino Experiments
Neutrinos



Neutrinos
are ghostly

Only 1 
in 1,000,000,000 
solar neutrinos 
interact passing 
through the Earth
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Neutrinos
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Neutrinos
the most ghostly 

and lightest matter  
particle in the

“Standard Model”
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Neutrinos

Image credit: higgstan

https://higgstan.com/


Proton ~ 1,000,000,000 eV

Up quark ~2,000,000 eV
Neutrinos

amusingly too 
small mass 

compared to siblings
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Neutrinos

Electron ~ 500,000 eV

Neutrino < 0.2 eV
Image credit: higgstan

https://higgstan.com/


Neutrinos
change their flavor 

as they travel 
(oscillation)
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Flavor Oscillation
measurements might 

shed light to a question, 
how the universe has 

evolved to the present?

ML for Analyzing Big Image Data in Neutrino Experiments
Neutrinos
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Outline
1. Neutrinos oscillation experiments
2. Machine learning for big image data from neutrino detectors
3. Machine learning for physics model optimization
4. Summary



Big Imaging Detectors
for the measurement of
Neutrino Oscillation

1
2



Neutrino Oscillation Experiments
two detectors to measure oscillated & unoscillated flux

ML for Analyzing Big Image Data in Neutrino Experiments
Neutrino Oscillation Experiments



Accelerator
well understood 
neutrino source 

for precision 
measurement

ML for Analyzing Big Image Data in Neutrino Experiments
Neutrino Oscillation Experiments



50,000 ton
ultra-pure water watched 
by 11,000 PMTs in 
Super-Kamiokande (1996)

Detectors
must be BIG

ML for Analyzing Big Image Data in Neutrino Experiments
Neutrino Oscillation Experiments



Detectors
must be capable 

of measuring
type & energy

proton

electron muon

proton

𝝂e creates 
electron (e)

𝝂𝝁 creates
muon (𝝁)

ML for Analyzing Big Image Data in Neutrino Experiments
Neutrino Oscillation Experiments
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Present/Future Challenges
Lack of quality physics reconstruction for big image data

Slow, manual (“by-hand”) workflow for development & tuning

Imperfect physics modeling

ML for Analyzing Big Image Data in Neutrino Experiments
Challenges in particle imaging neutrino detectors



Machine Learning for 
big image data in 
neutrino physics

19
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νμ

Liquid Argon TPC
~mm/pixel spatial resolution
~100 to 10,000 cubic-meters

~MeV level sensitivity

MicroBooNE
~87 ton (school bus)high resolution, 

big image data
100 M to giga-pixels

ML for Analyzing Big Image Data in Neutrino Experiments
Challenges in particle imaging neutrino detectors
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Distinct shapes
“track” v.s. “shower” 
particle trajectories

ML for Analyzing Big Image Data in Neutrino Experiments
Challenges in particle imaging neutrino detectors
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Kinks and wiggles
microscopic kinks tell 
particle momentum

ML for Analyzing Big Image Data in Neutrino Experiments
Challenges in particle imaging neutrino detectors
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Small things matter
they inform directions and 

guide global topology

ML for Analyzing Big Image Data in Neutrino Experiments
Challenges in particle imaging neutrino detectors
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Stopping 
particle

e- vs. γ
using dE/dX

Color = Energy
Both the absolute and the 
gradient of colors inform 
particle energy and type

ML for Analyzing Big Image Data in Neutrino Experiments
Challenges in particle imaging neutrino detectors
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DUNE: 3D imaging detector (LArTPC) observes
a pile-up of dozens neutrino interactions per image

ML for Analyzing Big Image Data in Neutrino Experiments
Challenges in particle imaging neutrino detectors



ML-Based LArTPC
Data Reconstruction

26
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w/ interpretable 
evidences

Pixel Feature
Extraction + Points

Input Data

p

pepi

Machine Learning for Neutrino Image Data Analysis
● Goal: particle-level type and energy reconstruction
● How: extract physically meaningful, hierarchical features 

(evidences) by chaining multiple ML models designed for each task

Multi-task
Cascade

High-level
Output

Pixel clustering Kinematics
Inference

Electron 
Neutrino

ML for Analyzing Big Image Data in Neutrino Experiments
End-to-end data reconstruction using ML
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Particle ClusteringPixel ClusteringPixel FeaturesInput

Three major stages of reconstruction

ML for Analyzing Big Image Data in Neutrino Experiments
End-to-end data reconstruction using ML
Machine Learning for Neutrino Image Data Analysis
● Goal: particle-level type and energy reconstruction
● How: extract physically meaningful, hierarchical features 

(evidences) by chaining multiple ML models designed for each task
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Distinguish 2 distinct topologies: showers v.s. tracks (for the next stage = clustering)
Identify trajectory edge points (track start/end, shower start)

PRD 99 092001
(2018)

ML for Analyzing Big Image Data in Neutrino Experiments
Stage 1: Pixel-level Feature Extraction + Scalablility

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.092001


ML for Analyzing Big Image Data in Neutrino Experiments
Stage 1-b: Particle Edge-point Prediction

Semantic segmentation 
(U-Net + residual conn.) 

Edge point detection
(Faster R-CNN)

Sparse tensor operation
(Minkowski Engine) 30

See Phys. Rev. D 102, 012005 (2019) and Phys. Rev. D 104, 032004 (2020)

https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1904.08755
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.032004
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ML for Analyzing Big Image Data in Neutrino Experiments
Stage 1: input & output

Stage 1 Input Stage 1 Output

Track
Shower
Michel electron
Delta-rays

See Phys. Rev. D 102, 012005 (2019)
 and Phys. Rev. D 104, 032004 (2020)

Work credit (from left) Ran I. (SLAC) 
and Laura D. (Stanford)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.032004


ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2: Particle & Interaction Clustering

Image credit: arXiv 1708.02551

Clustering in the embedding space
● Use CNN to learn a transformation function from the 3D voxels to the embedding 

space where clustering can be performed in a simple manner

32

https://arxiv.org/pdf/1708.02551.pdf


ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-a: Dense Pixel Clustering

See arxiv:2007.03083Work credit: 
Dae Heun Koh (Stanford)

33

https://arxiv.org/abs/2007.03083


ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-a: Dense Pixel Clustering

See arxiv:2007.03083Work credit: 
Dae Heun Koh (Stanford)

34

https://arxiv.org/abs/2007.03083
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ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-a: input & output

Stage 2-a Input Stage 2-a Output



ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-b: Sparse Fragment Clustering
Identifying 1 shower ... which consists of many fragments

36



ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-b: Sparse Fragment Clustering
Identifying 1 shower ... which consists of many fragments
● Interpret each fragment as a graph node + edges connect nodes in the same cluster

37



ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-b: Sparse Fragment Clustering
Identifying 1 shower ... which consists of many fragments
● Interpret each fragment as a graph node + edges connect nodes in the same cluster
● Cast the problem to a classification of node (e.g. particle type) and edge (clustering)

38



ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-b: Sparse Fragment Clustering

See Phys. Rev. D 104, 072004

Graph-NN for Particle 
Aggregation (GrapPA)
Input:

● Fragmented EM showers

39

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004?ft=1


ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-b: Sparse Fragment Clustering

Graph-NN for Particle 
Aggregation (GrapPA)
Input:

● Fragmented EM showers

Node features:
● Centroid, Covariance matrix, PCA
● Start point, direction (PPN)

40
See Phys. Rev. D 104, 072004

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004?ft=1


ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-b: Sparse Fragment Clustering

Graph-NN for Particle 
Aggregation (GrapPA)
Input:

● Fragmented EM showers

Node features:
● Centroid, Covariance matrix, PCA
● Start point, direction (PPN)

Input graph:
● Connect every node with every other node 

(complete graph)

41
See Phys. Rev. D 104, 072004

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004?ft=1


ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-b: Sparse Fragment Clustering

Graph-NN for Particle 
Aggregation (GrapPA)
Input:

● Fragmented EM showers

Node features:
● Centroid, Covariance matrix, PCA
● Start point, direction (PPN)

Input graph:
● Connect every node with every other node 

(complete graph)

Edge features:
● Displacement vector
● Closest points of approach

42
See Phys. Rev. D 104, 072004

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004?ft=1


ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-b: Sparse Fragment Clustering

See arxiv:2007.01335

Target Prediction

work credit:
Francois D (SLAC), Qing L. (USTC),
Brad N (stat, U. Chicago), Alexander Z. (MIT), 

43
See Phys. Rev. D 104, 072004

https://arxiv.org/abs/2007.01335
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004?ft=1
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ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2: input & output

Stage 2 Input Stage 2 Output



ML for Analyzing Big Image Data in Neutrino Experiments
Stage 3: Interaction Clustering

Identifying Each Interaction?
Grouping task = re-use GrapPA! 

● Interaction = a group of particles that 
shared the same origin (i.e. neutrino 
interaction)

● Edge classification to identify an 
interaction

● Node classification for particle type ID

45
See Phys. Rev. D 104, 072004

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004?ft=1


ML for Analyzing Big Image Data in Neutrino Experiments
Stage 3: Interaction Clustering

Target Group Predicted Interaction

46
See Phys. Rev. D 104, 072004

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004?ft=1


ML for Analyzing Big Image Data in Neutrino Experiments
Stage 3: Interaction Clustering

Predicted Interaction

Promising result to address 
DUNE-ND reconstruction challenge 
(~20 neutrino pile-up) 47

See Phys. Rev. D 104, 072004

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004?ft=1
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ML for Analyzing Big Image Data in Neutrino Experiments
Stage 3: input & output

Stage 3 Input Stage 3 Output



End-to-End optimizable chain
● ~1 week to train the full chain on a single GPU
● A task typically takes teams + months~year effort 
● Transfer-learning for multiple experiments! 49

Reference publications
Full chain (NeurIPS WS)

Public dataset
1, 2, 3, 4

ML for Analyzing Big Image Data in Neutrino Experiments
Deep Neural Network for Data Reconstruction

https://arxiv.org/abs/2102.01033
https://arxiv.org/abs/2006.01993
https://arxiv.org/abs/2007.03083
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.032004
https://arxiv.org/abs/2007.03083
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004
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ML for Analyzing Big Image Data in Neutrino Experiments
Physics model tuning

ML for
Tuning
Physics
Models
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The Catch
Used supervised optimization with 
simulated particle interactions, which may 
be imperfect (i.e. domain shift)

Explaining and harnessing adversarial examples

From an earlier slide

ML for Analyzing Big Image Data in Neutrino Experiments
Physics model tuning

https://arxiv.org/pdf/1412.6572.pdf
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The Catch
Used supervised optimization with 
simulated particle interactions, which may 
be imperfect (i.e. domain shift)
= multiple iterations of manual tuning

Explaining and harnessing adversarial examples

Fundamental particle 
interactions

Interaction with the 
detector volume

Detector response 
simulation

Most typical: detector mis-modeling

ML for Analyzing Big Image Data in Neutrino Experiments
Physics model tuning

https://arxiv.org/pdf/1412.6572.pdf
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Recent success in machine learning … much are backed by deep learning 

… for which, one key success is gradient-based optimization

ML (NN) 
parameters

𝜽

Input
x

Output
F (x|𝜽)

Optimization 
target

L ( F (x|𝜽), y)

Analysis & reconstruction
using neural networks

ML for Analyzing Big Image Data in Neutrino Experiments
Physics model tuning
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physics model 
parameters

𝜽

Input
x

Output
F (x|𝜽)

Optimization 
target

L ( F (x|𝜽), y)

Approximated 
gradient

Exact gradient

Recent success in machine learning … much are backed by deep learning 

… for which, one key success is gradient-based optimization

ML for Analyzing Big Image Data in Neutrino Experiments
Physics model tuning
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physics model 
parameters

𝜽

Input
x

Output
F (x|𝜽)

Optimization 
target

L ( F (x|𝜽), y)

Approximated 
gradient

Exact gradient

Recent success in machine learning … much are backed by deep learning 

… for which, one key success is gradient-based optimization

ML for Analyzing Big Image Data in Neutrino Experiments
Physics model tuning
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ML for Analyzing Big Image Data in Neutrino Experiments
Physics model tuning

Example Application
for

Modeling Detector Physics 
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Photo-multiplier tubes (PMTs) detect scintillation photons 
Optical Photon 

Transport

ML for Analyzing Big Image Data in Neutrino Experiments
Differentiable detector simulator



Photo-multiplier tubes (PMTs) detect scintillation photons 
produced isotropically from an Argon atom
1 meter muon produces > 4M photons 

58

Optical Photon 
Transport

ML for Analyzing Big Image Data in Neutrino Experiments
Differentiable detector simulator
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A marginalized “Visibility Map” for 3D voxelized 
volume used to estimate photon count at each PMT
Issue: static, not scalable

Example: ICARUS detector, 2D slice of a 3D map

Optical Photon 
Transport

ML for Analyzing Big Image Data in Neutrino Experiments
Differentiable detector simulator
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Static map (top) v.s. SIREN

Gradient map (top, sobel filter) v.s. SIREN

Optical Photon 
Transport

using
Differentiable 

Surrogate
(SIREN)
Neural scene 

representation 
(alternative: NeRF 
inc. differentiable 

rendering)

ML for Analyzing Big Image Data in Neutrino Experiments
Differentiable detector simulator
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Optical Photon 
Transport

using
Differentiable 

Surrogate
(SIREN)
Neural scene 

representation 
(alternative: NeRF 
inc. differentiable 

rendering)

Optimized using control sample (track-wise MSE loss)
Optimized using visibility map (pixel-wise MSE loss)

Work credit (from left): Olivia P. (UC Berkeley), Minjie L. (SLAC), 
Patrick T. (SLAC), , Gordon W. (Stanford CS), Chuan L. (Lambda Labs)

ML for Analyzing Big Image Data in Neutrino Experiments
Differentiable detector simulator
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Drift of Ionization 
Electrons for Imaging

ML for Analyzing Big Image Data in Neutrino Experiments
Differentiable detector simulator
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Drift of Ionization 
Electrons for Imaging

1. Particle ionize Argon

ML for Analyzing Big Image Data in Neutrino Experiments
Differentiable detector simulator
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1. Particle ionize Argon

2. Ionization electron drift in E-field 
at a constant velocity, some charge 
lost due to capture

3. Imaging by charge-sensitive plane 
(detectors) at the anode

Tuning simulation = extract physics 
model parameter values from data

E
le

ct
ri

c 
fie

ld

Drift of Ionization 
Electrons for Imaging

ML for Analyzing Big Image Data in Neutrino Experiments
Differentiable detector simulator
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Differentiable 
Simulator

using explicit gradient 
calculation using 
AD-enabled tools

(JAX/Pytorch)

Drift of Ionization 
Electrons for Imaging

Work credit due (from left): 
SLAC-ML: Youssef N., Sean G., Daniel R.
SLAC-neutrino: Yifan C.
LBNL-neutrino: Roberto S.

ML for Analyzing Big Image Data in Neutrino Experiments
Differentiable detector simulator
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Beyond detector physics modeling
● Neutrino-nucleus event generator

○ Diff. simulator for neutrino interaction, hadronization, etc.
○ Modeling many-body particle interactions inside a nucleus

● Modeling of particle passage through medium (e.g. stochastic “shower”)
● Fast surrogate to enable testing of new models with *very high* statistics

Image credit/collaborator
Callum Wilkinson (LBNL)

ML for Analyzing Big Image Data in Neutrino Experiments
Differentiable detector simulator



… wrapping up …
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Summary

● Neutrino detector trend: hi-res. particle imaging
● ML, in particular computer vision, + reconstruction

○ ML-based approach has shown strong promise + tuning automation 
○ Extension skipped in this talk: calibrated uncertainty quantification

● Emerging area: differentiable physics modeling
○ part of a larger trend, simulation-based inference
○ detector physics modeling a primary target to automate tuning
○ event generator will be a new frontier of active research (my view)

ML for Analyzing Big Image Data in Neutrino Experiments
Wrapping up...

68Thank you for your attention!



Machine Learning for Experimental Neutrino Physics
Back-up

69

Back-up slides



Machine Learning for Experimental Neutrino Physics
Back-up

70

Reconstruction 
Details
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“Applying CNN” is simple, but is it scalable for us?

CNN applies 
dense matrix 
operations

In photographs, 
all pixels are 
meaningful

grey pixels = dolphins, 
blue pixels = water, etc...

ML-based Neutrino Data Reconstruction Chain
Stage 1-a: Pixel Feature Extraction + Scalablility
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“Applying CNN” is simple, but is it scalable for us?
LArTPC data is generally sparse, but locally dense

CNN applies 
dense matrix 
operations

In photographs, 
all pixels are 
meaningful

Figures/Texts: courtesy of 
Laura Domine @ Stanford

<1% of pixels 
are non-zero in 
LArTPC data

Zero pixels are 
meaningless!

grey pixels = dolphins, 
blue pixels = water, etc...

Empty pixels = no energy

Figure credit: Laura Domine @ Stanford

ML-based Neutrino Data Reconstruction Chain
Stage 1-a: Pixel Feature Extraction + Scalablility
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“Applying CNN” is simple, but is it scalable for us?
LArTPC data is generally sparse, but locally dense

CNN applies 
dense matrix 
operations

In photographs, 
all pixels are 
meaningful

Figures/Texts: courtesy of 
Laura Domine @ Stanford

<1% of pixels 
are non-zero in 
LArTPC data

Zero pixels are 
meaningless!

○ Scalability for larger detectors
■ Computation cost increases linearly with the volume
■ But the number of non-zero pixels does not

Figure credit: Laura Domine @ Stanford

ML-based Neutrino Data Reconstruction Chain
Stage 1-a: Pixel Feature Extraction + Scalablility
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ML-based Neutrino Data Reconstruction Chain
Stage 1-a: Pixel Feature Extraction + Scalablility

Sparse Submanifold Convolutions
Only acts on an active input pixels 
+ can limit output activations for 
only the same pixels.
● 1st implementation by FAIR
● 2nd implementation by Stanford VL

○ … also supported in NVIDIA now

https://github.com/facebookresearch/SparseConvNet
https://github.com/NVIDIA/MinkowskiEngine
https://github.com/NVIDIA/MinkowskiEngine


ML-based Neutrino Data Reconstruction Chain
Stage 1-a: Pixel Feature Extraction + Scalablility

75

Type Proton Mu/Pi Shower Delta Michel

Acc. 0.99 0.98 0.99 0.97 0.96

Mu/pi
Proton
EM Shower
Delta Rays
MichelPhysRevD.102.012005 presented @ ACAT 2019

● Memory reduction ~ 1/360
● Compute time ~ 1/30
● Handles large future detectors 

CNN on sparse tensors
(MinkowskiEngine)
●  Public LArTPC simulation

○ Particle tracking (Geant4) + diffusion, no 
noise, true  energy 

●  Five type segmentation

https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1103%2FPhysRevD.102.012005&v=f3bb7570
https://indico.cern.ch/event/708041/contributions/3269747/attachments/1812175/2960103/ACAT_2019_Laura_Domine.pdf
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Distinguish 2 distinct particle topologies: showers v.s. tracks
Critical to deploy different algorithms for clustering pixels in the next stage.

PRD 99 092001
arXiv:1808.07269

ML for Analyzing Big Image Data in Neutrino Experiments
Stage 1-a: Pixel Feature Extraction + Scalablility

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.092001
https://arxiv.org/abs/1808.07269


Encoder Decoder

Residual
connections

input

conv

conv-s2-finc

tconv-s2-fde

softmax

Concatenation

conv-fdec

Architecture: U-Net + Residual Connections

Image credit: Laura Domine @ Stanford

Number of strided 
convolutions, convolution 
layers, residual connections, 
differ in implementations

ML for Analyzing Big Image Data in Neutrino Experiments
Stage 1-a: Pixel Feature Extraction + Scalablility

77
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Sparse U-ResNet fits more data in GPU + good scalability

@batch size 88
sparse uses 
93x less memory
 than dense and 
computation is
3x faster

Can handle easily the 
whole ICARUS detector 
which is x6 larger than 
MicroBooNE.

DUNE-FD is piece of 
cake (larger volume but 
less non-zero pixels)

Work credit: Laura Domine (Stanford)
and  Ran Itay (SLAC)

ML for Analyzing Big Image Data in Neutrino Experiments
Stage 1-a: Pixel Feature Extraction + Scalablility
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ML for Analyzing Big Image Data in Neutrino Experiments
Stage 1-a: input & output

Stage 1-a Input Stage 1-a Output

Track
Shower
Michel electron
Delta-rays



ML for Analyzing Big Image Data in Neutrino Experiments
Stage 1-b: Particle Edge-point Prediction

Point Proposal
Network (PPN)

… extension of U-ResNet 
with 3 CNN blocks

Work credit: Laura Domine (Stanford)
and  Patrick Tsang (SLAC)

80
See Phys. Rev. D 104, 032004

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.032004


ML for Analyzing Big Image Data in Neutrino Experiments
Stage 1-b: Particle Edge-point Prediction

PPN1 generates an 
attention mask at the 
lowest resolution

81
See Phys. Rev. D 104, 032004

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.032004


ML for Analyzing Big Image Data in Neutrino Experiments
Stage 1-b: Particle Edge-point Prediction

PPN2 generates an 
attention mask at the 
intermediate resolution

82
See Phys. Rev. D 104, 032004

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.032004


ML for Analyzing Big Image Data in Neutrino Experiments
Stage 1-b: Particle Edge-point Prediction

PPN makes the final 
prediction (point type + 
coordinate regression) 

83
See Phys. Rev. D 104, 032004

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.032004


ML-based Neutrino Data Reconstruction Chain
Stage 1-b: Particle Endpoint Prediction

96.8% of predicted points within 3 voxels of a true point
● 68% of true points found within the radius of 0.12 cm 
● Traditional (nominal) reconstruction method finds 90% of predicted points within 

17 voxels, and 68% of true points found within the radius of 0.74cm

See arxiv:2006.14745

84

https://arxiv.org/abs/2006.14745


ML-based Neutrino Data Reconstruction Chain
Stage 2-a: Dense Pixel Clustering
Simple approach: path-finding between PPN points
● MST to find the “shortest” path between PPN points to cluster pixels
● Works well! BUT it depends on PPN performance directly + not learnable

Work credit 
Francois Drielsma (SLAC) 85



ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-a: Dense Pixel Clustering

Scalable Particle 
Instance Clustering 
using Embedding

(SPICE)
● Embedding decoder learns 

transformation

● Seediness decoder 
identifies the centroids

● During training, loss is 
conditioned so that the 
points that belong to the 
same cluster follow a 
normal distributionSee arxiv:2007.03083 86

https://arxiv.org/abs/2007.03083


Pixels clustered into trajectory 
fragments using SPICE

ML-based Neutrino Data Reconstruction Chain
Stage 2-a: Dense Pixel Clustering

See arxiv:2007.03083 87

https://arxiv.org/abs/2007.03083


ML-based Neutrino Data Reconstruction Chain
Stage 2-b: Sparse Fragment Clustering

Graph-NN for Particle 
Aggregation (GrapPA)
Message passing (MP):

● Meta layer (arxiv:1806.01261)
● Essentially two 3-layer MLPs (BatchNorm 

+ LeakyReLU) for edge feature update and 
node feature update

● 3 times MP (=Edge+Node feature update)

Target:
● Prediction of adjacency matrix 

representing valid edges (=true partition)
● Apply cross-entropy loss

For more studies, see our paper
88

See Phys. Rev. D 104, 072004

https://arxiv.org/pdf/1806.01261.pdf
https://arxiv.org/abs/2007.01335
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004?ft=1


ML-based Neutrino Data Reconstruction Chain
Stage 2-b: Sparse Fragment Clustering

See arxiv:2007.01335

Clustering using GrapPA
● Mean purity and efficiency > 99%
● Sufficient for moving to the next 

stage (particle analysis)

Edge Prediction

89
See Phys. Rev. D 104, 072004

https://arxiv.org/abs/2007.01335
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004?ft=1


ML-based Neutrino Data Reconstruction Chain
Stage 2-b: Sparse Fragment Clustering

See arxiv:2007.01335

Start ID using GrapPA
● Important to identify the “primary 

fragment” (=shower start)
● >99% classification accuracy 

Node prediction

90
See Phys. Rev. D 104, 072004

https://arxiv.org/abs/2007.01335
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004?ft=1


Machine Learning for Experimental Neutrino Physics
Back-up

91

HPC 
Application



Inter-experimental collaborative work
● Open simulation sample

○ Open real data? Soon! (3D proto-type R&D @ SLAC)

● Open software development
○ Fast, distributed IO, optimized for sparse data

● Custom HDF5 format for sparse data for fast IO
● Custom API for data distribution using MPI

○ Using Horovod, good scaling @ ~100 GPUs test 
setup (with InfiniBand interconnect) 

Custom development among hobby-coders from 
SLAC/ANL/FNAL, lead by Corey Adams @ ANL 

Work credit:
Corey Adams (ANL)
Marco del Tutto (FNAL)

ML-based Neutrino Data Reconstruction Chain
Wrapping up...

92

https://osf.io/vruzp/
https://github.com/DeepLearnPhysics/larcv3
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Collaboration
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Neutrino Physics and Machine Learning Workshop
Reminder… :)

Nu2020 Satellite (indico link) + Main Workshop (indico link)

https://indico.slac.stanford.edu/event/377/
https://indico.slac.stanford.edu/event/371/
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Image Analysis 
in Neutrino 

Physics
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Machine Learning & Computer Vision in Neutrino Physics
You can find a cat? You can find a neutrino!

How to write an algorithm to 
identify a cat?

… very hard task ...
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1.  Write an algorithm based on physics principles
Development Workflow for non-ML reconstruction

algorithm

collection of 
certain shapesA cat  =

(or, a neutrino)

Machine Learning & Computer Vision in Neutrino Physics
You can find a cat? You can find a neutrino!

Images courtesy of Fei Fei Li’s TED talk
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algorithm

collection of 
certain shapesA cat  =

(or, a neutrino)

1.  Write an algorithm based on physics principles
2.  Run on simulation and data samples
3.  Observe failure cases, implement fixes/heuristics
4.  Iterate over 2 & 3 till a satisfactory level is achieved
5.  Chain multiple algorithms as one algorithm, repeat 2, 3, and 4.

Partial cat
(escaping the detector) Stretching cat (Nuclear Physics)

Development Workflow for non-ML reconstruction

Machine Learning & Computer Vision in Neutrino Physics
You can find a cat? You can find a neutrino!

Images courtesy of Fei Fei Li’s TED talk



Development Workflow for non-ML reconstruction
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1.  Write an algorithm based on physics principles
2.  Run on simulation and data samples
3.  Observe failure cases, implement fixes/heuristics
4.  Iterate over 2 & 3 till a satisfactory level is achieved
5.  Chain multiple algorithms as one algorithm, repeat 2, 3, and 4.

“Machine learning”
● Model instead of explicit programming
● Automatization of steps 2-4
● Multi-task optimization possible (step 5)

Next: what kind of ML algorithms?

Machine Learning & Computer Vision in Neutrino Physics
You can find a cat? You can find a neutrino!
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Machine Learning & Computer Vision in Neutrino Physics
Image Classifications: a lot of applications

Especially great for: “a rare event in a quiet detector”
●  Quiet = can assume “almost always neutrino”

○  e.g.) no cosmic-ray background

●  Rare = “only 1 neutrino”
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Machine Learning & Computer Vision in Neutrino Physics
Image Classifications: a lot of applications

Especially great for: “a rare event in a quiet detector”
●  Quiet = can assume “almost always neutrino”

○  e.g.) no cosmic-ray background

●  Rare = “only 1 neutrino”
○  the same “image classification architecture” can be applied for…

■ neutrino flavor (topology) classification
■ energy regression (image to one FP32 value)
■ vertex regression (image to three FP32 value)
■ etc. ...
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Machine Learning & Computer Vision in Neutrino Physics
Image Classifications: a lot of applications

Especially great for: “a rare event in a quiet detector”

… but most of LArTPC detectors are not …
●   MicroBooNE, ICARUS, SBND, ProtoDUNE … physics in next 5 years 

○ Busy: typically dozens of cosmic rays in each event
●   DUNE-ND 

○ Not rare (busy): a dozen of neutrino interaction pile-up in each event
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Machine Learning & Computer Vision in Neutrino Physics
Why Data Reconstruction

Image classification/regression: straight to “flavour & energy”

This is muon neutrino.
Energy is 1 GeV. 
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Machine Learning & Computer Vision in Neutrino Physics
Why Data Reconstruction

… would be nice to know why you thought so ...

… but also challenging: a huge single-step of information reduction

This is electron neutrino.
Energy is 1 eV.  
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First attempt: CNN image classifier 
for signal v.s. background classification

MicroBooNE (2016)

Machine Learning in Neutrino Physics & HEP
Deep Neural Network for Image Analysis

https://arxiv.org/abs/1611.05531
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View-0 View-1 View-2

νe CC

ν𝝁 CC NC 1π0 NC 1π+ 

DUNE (2020)

CNN image classification remains to date as a strong approach

Machine Learning in Neutrino Physics & HEP
Deep Neural Network for Image Analysis

https://arxiv.org/abs/2006.15052
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100 cm

10
0

 c
m

Cosmic Data : Run 6280  Event 6812  May 12th, 2016

Rare Signals

ML for Analyzing Big Image Data in Neutrino Experiments
Challenges in particle imaging neutrino detectors
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100 cm

Cosmic Data : Run 6280  Event 6812  May 12th, 2016

10
0

 c
m

Many Backgrounds

ML for Analyzing Big Image Data in Neutrino Experiments
Challenges in particle imaging neutrino detectors

Actual scale

Actual scale

zoom-in
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Machine Learning & Computer Vision in Neutrino Physics
Bonus: isochronous ghost point removal

11
0

ICARUS Detector
Reconstructed 3D points

work credit:
Laura Domine
Patrick Tsang



Machine Learning & Computer Vision in Neutrino Physics
Bonus: isochronous ghost point removal

11
1

Network output
“Ghost points” 

removed



Machine Learning & Computer Vision in Neutrino Physics
Bonus: isochronous ghost point removal

11
2

Truth (label)
“Ghost points”

removed
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ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

Instance+Semantic Segmentation
● Mask R-CNN … a popular solution, many applications in science/industries

○ Object (=instance) detection + instance pixel masking in a bounding box
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𝜇 𝜇
Occlusion issue

The overlap rate of 
particles is very high 

especially for our signal 
(neutrinos) with an event 

vertex.

ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

Instance+Semantic Segmentation
● Mask R-CNN … a popular solution, many applications in science/industries

○ Object (=instance) detection + instance pixel masking in a bounding box
○ Issue: instance distinction is affected by BB position/size
○ Another family: Single-Shot-Detection (SSD) based (not covered here)
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𝜇 𝜇

ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

Instance+Semantic Segmentation
● Mask R-CNN … a popular solution, many applications in science/industries

○ Object (=instance) detection + instance pixel masking in a bounding box
○ Issue: instance distinction is affected by BB position/size
○ Another family: Single-Shot-Detection (SSD) based (not covered here)

Cherry-picked case where 
overlap is minimal



ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

Instance+Semantic Segmentation
● Three component loss: pull together points that belong to the 

same cluster, keep distance between clusters, and regularization

Equation credit: Dae Hyun K. @ Stanford Image credit: arXiv 1708.02551
117

https://arxiv.org/pdf/1708.02551.pdf
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Machine Learning & Computer Vision in Neutrino Physics
Why Data Reconstruction

Image Context Identification
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Machine Learning & Computer Vision in Neutrino Physics
Why Data Reconstruction

Image Context Correlation/Hierarchy Analysis
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Machine Learning & Computer Vision in Neutrino Physics
Why Data Reconstruction

Interaction 
vertex!

Proton,
Proton,
and muon!

So this is likely 
2p1𝜇 with one 
anomaly cluster

Detector noise!
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1
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Machine Learning & Computer Vision in Neutrino Physics
Semantic Segmentation for Pixel-level Particle ID
Separate electron/positron energy depositions from other types at raw waveform level. 
Helps the downstream clustering algorithms (data/sim comp. @ arxiv:1808.07269)

PRD 99 092001
arXiv:1808.07269

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.092001
https://arxiv.org/abs/1808.07269


Machine Learning & Computer Vision in Neutrino Physics
Semantic Segmentation for Pixel-level Particle ID

Encoder Decoder

Residual
connections

input

conv

conv-s2-finc

tconv-s2-fde

softmax

Concatenation

conv-fdec

Architecture: U-Net + Residual Connections

Image credit: Laura Domine @ Stanford

Number of strided 
convolutions, convolution 
layers, residual connections, 
differ in impementations
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Machine Learning & Computer Vision in Neutrino Physics
Fun Playing with Semantic Segmentation
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Machine Learning & Computer Vision in Neutrino Physics
Fun Playing with Semantic Segmentation

Localized features at the 
pixel-level are useful to 
inspect correlation of 

data features & 
algorithm responses
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Machine Learning & Computer Vision in Neutrino Physics
Fun Playing with Semantic Segmentation

Localized features at the 
pixel-level are useful to 
inspect correlation of 

data features & 
algorithm responses
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Misc. Slides
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Research directions:
● ML to transform (map) simulator output to be more 

data-like (learn to transform between domains)
● automated optimization of detector physics modeling 

using real data directly

Input
physics

Simulator 
output Detector 

simulation

Real 
detector 

Real data
Same?

ML for Analyzing Big Image Data in Neutrino Experiments
Physics model tuning



Machine Learning & Computer Vision in Neutrino Physics
Why neutrinos?

Inverse Beta Decay (IBD)
νe + p → e+ + n

from a nuclear reactor
(Reines & Cowan)

Cd-doped water
0.4 ton, 100 PMTs

(1953)
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E.g. Differentiable Simulator
● Exploit model derivatives to enable new inference techniques

○ Surrogate (neural network) model to approximate gradients
○ Exact gradient using differentiable programming (ML) frameworks

● Applications: physics inference, design optimization, decision control, etc.

Left: surrogate 
model for magnet 
optimization

Right: differentiable 
matrix element 
calculation  (MadJax)

Machine Learning in Neutrino Physics & HEP
Next Step: Innovative Simulator

https://proceedings.neurips.cc//paper/2020/file/a878dbebc902328b41dbf02aa87abb58-Paper.pdf
https://proceedings.neurips.cc//paper/2020/file/a878dbebc902328b41dbf02aa87abb58-Paper.pdf
https://proceedings.neurips.cc//paper/2020/file/a878dbebc902328b41dbf02aa87abb58-Paper.pdf
https://indico.cern.ch/event/855454/contributions/4606435/attachments/2355533/4019809/MadJaxACAT.pdf
https://indico.cern.ch/event/855454/contributions/4606435/attachments/2355533/4019809/MadJaxACAT.pdf
https://indico.cern.ch/event/855454/contributions/4606435/attachments/2355533/4019809/MadJaxACAT.pdf

