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Theoretical understanding of deep learning

Can we gain an understanding of deep learning?

● One that gives us insight into mechanisms and matches with experiments
● A different set of demands than in learning theory (statistical / algorithmic guarantees)
● Some questions may be too microscopic (byproduct of a complex optimization process)

Part 1: Highlights (from past several years) on theory of learning in deep neural networks (DNNs)
● Exactly solvable limits from in DNNs that are wide

○ Correspondence with Gaussian processes, linear models, & kernel methods
● Dynamics in other regimes

Part 2: Understanding “scaling laws” in (supervised) deep learning



Class of functions

Fully-connected deep neural network (DNN)

፧

Setting of interest: empirical risk minimization under gradient descent



Historically, a lot of focus has been on parameter space because:
● That is what you access directly in optimization.
● Statistical models were constructed as to be more interpretable: learned parameters had meaning.

○ e.g. moments of a distribution

In neural networks, parameters were not designed to be interpretable, and there is redundancy.

Motivates asking questions about the functions that are represented.

What class of functions is expressed at initialization (beginning of optimization)?

Function Space Description



Infinite-width limits: an exact equivalence to Gaussian field theory

We typically draw parameters iid from a prior distribution.

The distribution over functions is described by a new class of Gaussian Processes:

Lee* and YB*, et al. ICLR 2018; A. G. de G. Matthews, et al. ICLR 2018. 

“NNGP” kernel



Recursion on function → recursion on kernels 

፧፧

Infinite-width limits: an exact equivalence to Gaussian field theory



Study function space evolution:

This suggests defining a quantity, which is a kernel (“Neural Tangent Kernel”). 
It holds a distinguished place in the dynamics. 

Dynamics of gradient descent in infinitely wide DNNs

Consider gradient flow (for illustration):



Furthermore, it turns out that the “effective” model in parameter space corresponds to a first-order 
Taylor expansion of the function: 

[1]. A. Jacot, et al. “Neural Tangent Kernel,” NeurIPS 2018, and many others. (Function space evolution.)
[2]. Lee*, Xiao*, Schoenholz, YB, Novak, Sohl-Dickstein, Pennington. NeurIPS 2019. (Parameter space evolution.)

This allows us to get exact, analytic solutions for the evolution.

Mechanism by which this happens: crucially tied to how various scales enter the problem.

Dynamics of gradient descent in infinitely wide DNNs



Feature learning regimes

Depth of network
Width of hidden layers
Dataset size
Learning rate
….
play a role in determining which part of the “phase diagram” you are in.

NTK - GP correspondence breaks down above a critical learning rate [1] -> phase transition. 

Perturbation theory for corrections based off of GP limit & other theoretical treatments (see [2-6]).

[1]. Lewkowycz, YB, Dyer, Sohl-Dickstein, Gur-Ari, arxiv 2003.02218. 
[2]. Yaida, MSML 2020. 
[3]. Gur-Ari & Dyer, ICLR 2020. 
[4]. Halverson, Maiti, Stoner, MLST, Vol 2 035002 (2021). 
[5]. Roberts, Yaida, Hanin, arxiv 2106.10165 (2021). 
[6]  Zavatone-Veth & Pehelvan, NeurIPS 2021 & subsequent papers.



Lessons learned from the infinite width limit

Infinitely many parameters is not a problem.
● Less complex as we add parameters and approach the limit.

Reduced a complicated problem to a simpler problem: linear models with special set of fixed features. 

(Not discussed) From the connection to linear models, know that a much smaller number of directions in 
parameter space are updated (determined by data).

(Not discussed) From the exact solutions, one can see that “simpler” functions are learned first during 
training (“spectral bias”).

These are statements about the effective dynamics, i.e. the region actually explored.

The problem turned out to be effectively convex.
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Motivation

Recent empirical work has found that in many settings in practice, neural network performance obeys 
smooth power-law trends as

● Dataset size
● Model size
● Amount of compute

is increased. 

Kaplan & McCandlish, et al. “Scaling 
Laws for Neural Language Models.” 
arxiv 2001.08361.

Decoder-only Transformer model 
trained on WebText2 dataset.



Motivation

Can we better understand why these trends emerge empirically, and what features of the 
data and models determine the exponents?

Understand the mechanisms that control scaling

● We will see in some regimes there is a universal exponent and in others it is non-universal.

● We will examine a setting in which we have a full handle on the problem (random feature / 
kernel models).

● In the more general setting, we will propose an expansion & will empirically test the connection 
to other measurable quantities.



Setup

Let D = training set size for dataset 
Let P = number of models parameters; mostly we will focus on just scaling with layer width, W ~ P1/2.

Notation
Power law exponent for D scaling: αD
Power law exponent for P scaling: αP



Classification

We devised a classification of exponents based on their origin.

“Variance-limited” regime: 
● Originates from fluctuations (the variance) when smoothly approaching a limit.
● Gives universal integer exponent = 1 asymptotically.

“Resolution-limited” regime:
● Main idea: when one variable is not a bottleneck (take it to -> infinity), study scaling as a function 

of the other variable. This variable (training data or parameters) serves to improve the resolution 
of some manifold.

● Gives nontrivial (non-integer) exponents.



Classification

Variance-limited regime: Fix one of D or P. Let other variable grow (>>) and study scaling with that variable. 
Integer (=1) exponent.

1. Fix D, let P >> D, study P scaling
2. Fix P, let D >> P, study D scaling

Resolution-limited regime: Take one of D or P to be effectively infinite (>>) so it is no longer a bottleneck and 
examine scaling as a function of the other variable. 
Nontrivial (non-integer) exponents.

1. Fix P, P >> D, study D scaling
2. Fix D, D >> P, study P scaling

Variance-limited Resolution-limited

Resolution-limited Variance-limited

Underparameterized D >> P Overparameterized P >> D

Scaling with D

Scaling with P



Four regimes together (neural networks) 

● Different datasets
○ CIFAR-10, CIFAR-100
○ SVHN
○ MNIST, Fashion-MNIST
○ Teacher-Student

● Different models 
○ FC, CNN, WRN
○ Nonlinearities

● Different loss functions
○ MSE, Cross-entropy



Classification

Support for this comes from:

● Student-teacher random features setting 
○ Explicit derivations for all four regimes 
○ Can relate exponents to properties of kernel (power law decay in eigenvalue spectrum)
○ We also obtain a duality between model and dataset-size scaling (that is, exponents are the 

same).
We test these predictions empirically outside of this framework, in the pre-training + fine-tuning setting,
and find agreement.

● General setting (model, data, …)
○ Variance-limited regime (two regimes): formal proof.
○ Resolution-limited regime (two regimes): posit an expansion & test empirically.



Student-Teacher Random Features Model



In these cases, we can derive variance-limited & resolution-limited exponents from exact expressions.

Setup we consider (MSE):

● Linear teacher model constructed from fixed features, {FM}, potentially infinite.

● Student model constructed from features which are some projection of teacher features.

We analyze explicit expressions for the test loss in terms of the Gram & projection matrices, extracting the 
leading term.

Concrete case study: student-teacher random features model



Variance-limited exponent (=1): 

Originates from fluctuations of finite covariance matrix about limiting covariance.

Resolution-limited exponent:

Analyze for eigenvalues satisfying power-law spectrum. 
● Kernel generically has power-law spectrum with exponent 1+ αK:

● Then αD, αP = αK. Note we also have a “duality” (αD  = αP): data and model scaling exponent is the 
same. 

Concrete case study: student-teacher random features model



Linear student-teacher 
models with random 
features, trained with MSE 
loss to convergence. 

Dataset is varied by 
downsampling MNIST by 
the specified pool size.

Concrete case study: student-teacher random features model



Kernel spectrum is for 
random fully-connected 
deep network (Relu) on 
pooled MNIST

Sufficiently smooth kernels have a bound on their eigenvalue spectrum.

[Weyl; Kühn]. A Ct kernel on a d-dimensional space has eigenvalues:  

Concrete case study: student-teacher random features model



Linear classifier from pre-trained embeddings 

Low regularization Tuned regularization

Despite using actual CIFAR-10 targets, we still observe duality in resolution-limited scaling (αD  = αP).

EfficientNet-B5 model pre-trained on ImageNet. 
We use it to extract features for CIFAR-10 and then train linear classifier on these features.



General Setting



Variance-limited scaling

Large dataset behavior: concentration around population values (e.g. gradients of loss in gradient 
descent)

Large width behavior: based off of (known) leading finite-width corrections to infinite-width limit

See paper for details.



Resolution-limited scaling

Here, one variable taken -> infinity, study scaling with other variable.

At a rough level, the other variable is helping you better resolve a manifold.

● Suppose P >> D (overparameterized): training points
provide interpolation / anchor points and error at test 
point is controlled by distance to nearest training point. 

Interpolation in a student model as we 
add more data, in a 4d input space.

● Suppose D >> P (underparameterized). Why might “resolution-limited” picture be reasonable? 
Adding parameters gives you expressivity / degrees of freedom to fit the manifold. 



Resolution-limited scaling: series expansion 

Since the typical nearest neighbor distance 
scales as ~ D-1/d or as ~P-1/d we expect:

For a piecewise linear function, generically expect to start at n = 4.

Tied to scaling of 
nearest-neighbor distance 
on d-dimensional manifold.



Comparison between αD and intrinsic dimensionality, d

Dataset size scaling with dimension

Model size scaling
 with dimension

Sharma & Kaplan, arxiv 2004.10802
Solid circles (CNN); hollow circles (Wide Resnet 28-10)

Left: estimating d by examining 
power-law scaling of nearest-neighbor 
distances from penultimate layer of 
trained network.



Conclusion

● Categorization of exponents based on mechanism
○ In some regimes, expect a common scaling exponent 
○ In other regimes, get non-integer powers controlled by kernel eigenvalues, effective 

dimensionality 

● Limitations
○ Lack control on intermediate regimes (D ~ P) or small values (small D, P)

● Largest language models trained on diverse data: 
have been observed to break scaling!

Brown, et al. arxiv 2005.14165 (2020).
See also Bordelon, et al. ICML 2020.
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