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Theoretical Physicists’ Biases 
Meet Machine Learning
Using and finding functional bias in ML for mathematical physics systems
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Our purpose in theoretical physics is not to describe the world as we find it,
but to explain - in terms of a few fundamental principles - why the world is 
the way it is. 

Steven Weinberg 

Can ML achieve this? [requiring explainable AI] 

If yes, which NEW physics can we reveal? 
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Content
Theoretical physics problems made for ML: understanding high-dimensional data
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Key: Using domain knowledge/bias in ML ansatz

How to extract domain knowledge/biases with ML 
(e.g. what are the symmetries of a system) 

Efficient solutions to PDEs (in mathematical physics) with ML

Example: Numerical Calabi-Yau metrics

I.

II.

Why high-dimensional data? Large function space of possible solutions



Why ML and physics?
ML can overcome curses of dimensionality

• Efficient functional biases can overcome this curse of dimensionality, e.g. 
utilising symmetries of your data 
 

• Such functional biases (e.g. symmetries) are at the heart of all physics models

Deep CNNs

Translation invariance: CNNs Geometric Deep Learning

Bronstein talk at ICLR, 2104.13478
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based on (2012.04656), in collaboration with:
Moduli dependent Calabi-Yau and SU(3)-structure metrics from Machine Learning 

Lara Anderson James GrayMathis Gerdes Nikhil Raghuram Fabian Ruehle
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Finding symmetries and integrable structures of physical systems

and based on (2104.14444, 2103.07475, 
2003.13679, 2002.05169),  
in collaboration with:

Marc Syvaeri Dieter LüstPhilip Betzler



Metrics with ML

How to improve our knowledge of EFTs in string theory with the metric  
(non-holomorphic quantities)?  

See also: Douglas et al 2012.04797, and Jejjala et al 2012.15821



Metrics matter

• The metric is key in any extra-dimensional physics model  
 
 
 
            


• String compactifications are no exception to this. For instance:  
 

   1. Matter kinetic terms (soft-terms, cf. 0906.3297)  
   2. Moduli potential (D3-brane inflation [probing directly CY-moduli space])  
   3. Massive string spectrum

S = ∫M4+D

d4+Dx − det g4+D R(g4+D)

 =  x M4+D A4 XD

A4

XD

combined metric
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Signatures of Quantum Gravity
Metrics in the EFT

Characteristic features in the EFTs of theories 
with extra dimensions? 

 

ℒmoduli = k(ϕ)(∂ϕ)2 + V(ϕ)

How to distinguish these signatures from some bottom-up BSM model?

Understand the string theory EFT better
 =  x M4+D A4 XD

XD

S = ∫M4+D

d4+Dx − det g4+D R(g4+D)

combined metric
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General -spacek(ϕ)
Stringy -spacek(ϕ)

Is this picture true?



Which Metrics?
6D metrics relevant for string theory

• String Theory EOM for 4D  Minkowski vacua require a Ricci-flat 
Kähler metric          (Candelas, Horowitz, Strominger, Witten 1985)

$ = 1

• Which compact spaces do exist with a Ricci-flat Kähler metric?  
 

        Calabi-Yau manifolds 
        (Example today: Quintic hypersurface in ) ℙ4

• Yau (1977) showed the existence of such a unique Ricci-flat Kähler 
metric, but without explicit constructions.

• One definition of CY-threefold: complex threefold admitting a nowhere 
vanishing real two-form J, and a complex three form  such that:  
         

Ω
J ∧ Ω = 0, J ∧ J ∧ J = 3i

4 Ω ∧ Ω̄, dJ = 0, dΩ = 0
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Which Metrics?
6D metrics relevant for string theory

• The metric is given as igab̄ = Jab̄

• Simplest examples: complete intersection manifolds in 
projective spaces

• Quintic hypersurface in : 
         

ℙ4

pψ( ⃗z) =
d+1

∑
i=0

zd+2
i + ψ

d+1

∏
i=0

zi = 0

• Holomorphic (3,0) form (Candelas et al): 
               on patch with ( )Ω = 1

∂pψ( ⃗z)/∂zb ⋀
c = 1,…, d

c ≠ a, b

dzc za = 1

Quintic hypersurface in :
ℙ4

pψ( ⃗z ) =
d+1

∑
i=0

zd+2
i + ψ

d+1

∏
i=0

zi = 0

Algebraic metrics: 




 

K = 1/2π ln(k)

k =
Nk

∑
α,β̄=0

sα( ⃗z ) Hαβ̄ s̄β̄( ⃗z̄)

gab̄ = ∂a∂b̄K = 1
2π

kkab̄ − kakb̄

k2
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Which Metrics?
Functional bias: algebraic metrics

• Idea: Generalised Fubini Study metrics can approximate the metric of 
our choice 

         ,   

 
         

K = 1/2π ln(k) k =
Nk

∑
α,β̄=0

sα( ⃗z) Hαβ̄ s̄β̄( ⃗z̄)

gab̄ = ∂a∂b̄K = 1
2π

kkab̄ − kakb̄

k2

• Embedding into larger projective space (Kodaira embedding):  
polynomials in .

sα( ⃗z)
za

• These metrics provide “basis” of Kähler metrics on X. (Tian: such 
Kähler potentials are dense in the space of Kähler potentials)

Quintic hypersurface in :
ℙ4

pψ( ⃗z ) =
d+1

∑
i=0

zd+2
i + ψ

d+1

∏
i=0

zi = 0

Algebraic metrics: 




 

K = 1/2π ln(k)

k =
Nk

∑
α,β̄=0

sα( ⃗z ) Hαβ̄ s̄β̄( ⃗z̄)

gab̄ = ∂a∂b̄K = 1
2π

kkab̄ − kakb̄

k2
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Metrics are hard without ML
6D metrics relevant for string theory

• Finite distance methods “fail” (Headrick, Wiseman 2009)


• Spectral methods simplify, but they are currently 
inefficient:  
        1. Single point in moduli space  
        2. High accuracies become expensive 
 
(Donaldson, Braun, Belidze, Douglas, Ovrut, Karp, Cui, Gray, Lukic, Ashmore, He; 
Kachru, Tripathy, Zimet; Headrick and Nasar)


• How about non-Kähler solutions?


• Target on a practical level: metric with reasonable 
accuracy for one string compactification ~ O(1 day) 
[impossible with non ML algorithms]

k ~ accuracy of spectral resolution

Time to check accuracy of solution σ
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Can Machine Learning help?
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Which metric?
What is the optimisation problem

1. Ricci-flatness: (Induced FS is not Ricci-flat): 
               Ricci tensor:  
               Cheaper alternative (less derivatives) via Monge-Ampere equation: 

                                         

Ri'̄ = − ∂i∂'̄ log det g

J ∧ J ∧ J = κ Ω ∧ Ω̄ → ℒMA = 1
∫X Ω ∧ Ω̄ ∫X

1 − 1
κ

J3

Ω ∧ Ω̄
2. Kählerity: 

                   
 
                                        

dJ = 0 ↔ gi'̄,k dzi ∧ dz̄'̄ ∧ dzk = 0 = gi'̄,k̄ dzi ∧ dz̄'̄ ∧ dz̄k̄

cijk = gi'̄,k − gk'̄,i = 0 → ℒdJ = ∑
i,j,k

| |Re(cijk) | |n + | | Im(cijk) | |n

3. Well defined across different coordinate patches: 
 
       ,           g( j) = Tij ⋅ g(i) ⋅ T†

ij Tij = ∂ ⃗z(i)/∂ ⃗z( j) → ℒTransition = 1
d ∑

k,j
g(k)

NN( ⃗z) − Tjk( ⃗z) ⋅ g( j)
NN( ⃗z) ⋅ T†

jk( ⃗z̄)
n

 J ∧ J ∧ J ∼ det g

Ω = 1
∂pψ( ⃗z )/∂zb ⋀

c = 1,…, d
c ≠ a, b

dzc
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Monge-Ampere Loss (different metrics)



Our experiments
Overview on what we get to work

• Supervised learning of Kähler potential (data from running 
spectral algorithms) 
Improvement: moduli dependence of metric


• Unsupervised learning of Kähler potential (using energy 
functionals measuring deviation from Ricci-flatness) 
Improvement: moduli dependence of metric and efficiency 
(no running of spectral methods)


• Unsupervised learning of metric directly (perturbation of 
Fubini study metric)


• Metric networks to go beyond Calabi-Yau: here SU(3) 
structure manifolds, i.e. more general string backgrounds
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Supervised Learning of Metrics:

Monge-Ampere Loss 
for different moduli values

Improved results outside training domain



2. Learn K directly
CY: Quintic in        : 

<latexit sha1_base64="GAjR+EEolYb9p+vcxKPWwGL4q7U=">AAAB+HicbVDLSgMxFL3js9ZX1aWbYBFcSJmRii6LblxWsA9ox5JJM21okhmTjFCHfofbuhK3fozg35hpZ6GtBwKHc+7lnpwg5kwb1/12VlbX1jc2C1vF7Z3dvf3SwWFTR4kitEEiHql2gDXlTNKGYYbTdqwoFgGnrWB0m/mtZ6o0i+SDGcfUF3ggWcgINlbyuwKbYRCItD55rPZKZbfizoCWiZeTMuSo90pf3X5EEkGlIRxr3fHc2PgpVoYRTifFbqJpjMkID2jHUokF1X46Cz1Bp1bpozBS9kmDZurvjRQLrccisJNZSL3oZeK5jf6f30lMeO2nTMaJoZLMj4UJRyZCWQuozxQlho8twUQxmxeRIVaYGNtV0RbhLX57mTQvKt5lxb2vlms3eSUFOIYTOAMPrqAGd1CHBhB4gleYwpvz4kydd+djPrri5DtH8AfO5w9ny5OG</latexit>

4 <latexit sha1_base64="6OtTQC4dQjbk14+yuUTFkmAKuzY=">AAACI3icbVDLSgMxFM34rPU16tJNsAiCUjK1VTdC0Y3LCvYB7Thk0kwbmnmQZIR26J+49Ufc1pWI4MJ/MZ3OQlsv5HA4515u7nEjzqRC6MtYWl5ZXVvPbeQ3t7Z3ds29/YYMY0FonYQ8FC0XS8pZQOuKKU5bkaDYdzltuoPbqd98okKyMHhQw4jaPu4FzGMEKy055sXIQY+V05FjpVhK8TzFssZOJBnULdrXpna0DK8hcswCKqK04CKxMlIAWdUc87PTDUns00ARjqVsWyhSdoKFYoTTcb4TSxphMsA92tY0wD6VdpLeN4bHWulCLxT6BQqm6u+JBPtSDn1Xd/pY9eW8NxXPXNf/z2/HyruyExZEsaIBmS3zYg5VCKeBwS4TlCg+1AQTwfR/IeljgYnSseZ1ENb82YukUSpalSK6LxeqN1kkOXAIjsAJsMAlqII7UAN1QMAzeAUT8Ga8GBPj3fiYtS4Z2cwB+FPG9w8gEKDZ</latexit>

z50 + z51 + z52 + z53 + z54 +  z0z1z2z3z4 = 0

Figure 4: � accuracies at k = 6 achieved by the dense network with one and two hidden
layers. The shaded area indicates the range of | | that was not used during training,
and thus shows the extrapolation behavior of the networks. For reference, the � accuracy
achieved by Donaldson’s algorithm for the same range of | | is shown. The dashed line
corresponds to the extrapolation of using Donaldson’s balanced metric at  = 100 over
real values of  . The error band in each case cooresponds to the maximal and minimal
value obtained respectively when evaluating the � accuracy at different angles.

of the metric will depend on the position in the CY manifold as well as on the complex
structure. In contrast to the methods presented to learn the Kähler potential, we now aim
to learn the components of the metric g directly. This has several potential advantages:

• Instead of the need of predicting N2
k values for learning the Kähler potential, the NN

always only needs to predict the independent components of the metric, i.e. d2 real
parameters for a complex CY d-fold (respectively d+1 when working in the ambient
space) [FR: why is this relevant? do we learn in the ambient space?].

• In comparison to approaches which use a general ansatz for the Kähler potential,
learning the metric directly saves two derivatives when evaluating the Monge-Ampère
loss.

To the best of our knowledge, our experiments are the first to test whether these heuristic
differences can be numerically advantageous.

However, there is also a disadvantage as compared to the method discussed in Section 2.6.
The metric g is not automatically Kähler, nor does it automatically glue nicely across
patches of d+1. So, in addition to finding a Ricci-flat metric that solves the Monge-
Ampère equation (2.3), we will need to impose that the Kähler and gluing conditions are
satisfied. As mentioned previously, the fact that the Kähler property is not ensured by
construction also allows us to apply this approach to more general (non-Kähler) SU(3)-
structure metrics. The overlap condition is important, since if we worked just on a single
patch, a trivial solution would be the flat (and hence trivially Ricci flat) metric on that
patch. [FR: Not sure to which extent this is correct in our setup (I can’t remember
whether I wrote this, but I think it’s wrong). It is correct theoretically, but a flat metric
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Learning H
Optimising with  (no Donaldson)σ

• k=6 (42025 components in H), sampling fast and always using new points  
 
 
 
 
 
 
 
 
 
 
 
 
 

GeneralisationTrained

σ = 1
∫X Ω ∧ Ω̄ ∫X

1 − 1
κ

J3

Ω ∧ Ω̄
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Algebraic metrics: 




 

K = 1/2π ln(k)

k =
Nk

∑
α,β̄=0

sα( ⃗z ) Hαβ̄ s̄β̄( ⃗z̄)

gab̄ = ∂a∂b̄K = 1
2π

kkab̄ − kakb̄

k2

Quintic hypersurface in :
ℙ4

pψ( ⃗z ) =
d+1

∑
i=0

zd+2
i + ψ

d+1

∏
i=0

zi = 0



Beyond Calabi-Yau Metrics with ML

Donaldson, 
Headrick & 

Nassar
Kähler 

potential
Metric 
Directly

Fixed point in 
Moduli Space ✔ ✔ ✔

Moduli 
Dependence

✗

(interpolation) ✔ ✔

Non Kähler ✗ ✗ ✔

Analytic ✗ ✗ ✗

• Approach of learning metric directly allows to search for metrics with different properties

• Philosophy: modified loss functions, additionally learned outputs.

• Augment the landscape of metrics to G2 and SU(3) structure manifolds? Phenomenologically necessary, 

otherwise missing large parts of string theory constructions; unexplored mathematical structures.

• Example SU(3) structure manifolds (simple example works) 

 
  modification of loss:        dJ(g) = 0 → dJ(g) = W4 ∧ J(g)SU(3) structure

0 2 4 6 8 101214161820222426283032343638404244464850
epoch

100

101

102

103

lo
ss

Average loss per epoch

Losses

Monge-Ampère

Kähler

Overlap

Total

Figure 7: Change in loss during training for the SU(3)-structure example.

Hence, we will use the loss

L
0
W4

= ||dJ � d ln a1 ^ J ||n , (3.19)

which closely resembles the Kähler loss (2.18).

We will use the same example as for the CY metrics in earlier sections, i.e. the quintic with
one parameter  = 10. We also leave all other hyperparameters unchanged; in particular,
we choose the weight factor �1 of the contribution to the SU(3) loss function to be 10, all
other �i to be one, and set n = 1 (so that we are using the L1 norm for the losses and not
weighting outliers disproportionately strongly). We use multiplicative boosting from the
Fubini-Study metric. Figure 7 shows how the losses change over the course of training. As
a measure for how much the metric improves during training as compared to the Fubini-
Study metric, we compute the equivalent of the ⌘ error measure, i.e. the departure from
the Monge-Ampere equation averaged over all points on the manifold in the test set:

h⌘SU(3)i =
1

Npts

NptsX

i=1

������
1 �

3i

4

⌦ ^ ⌦̄

J3

�����
pi

������
. (3.20)

We find that if we set the NN to zero, i.e. use the FS metric as the lowest order approxima-
tion to the SU(3)-structure metric, we get h⌘SU(3)(gFS)i ⇡ 400000. In contrast, the metric
after training gives h⌘SU(3)(gNN )i ⇡ 1.2, i.e. an improvement of 5 orders of magnitude.

The error measure (3.20) is closely related to the loss function (3.17). In addition, this
quantity is only a measure of how close we are to some SU(3) structure. It does not
demonstrate that we are correctly approximating the analytic example described in Sec-
tion 3.1.1. In order show that our numerics are approaching this known solution we wish
to consider an error measure of the following form.

Eknown = ||gnumeric � gknown||n (3.21)

In this expression gnumeric is the output of our trained NN and gknown is the known solution
computed from the quantities given in Section 3.1.1. In fact, some caution is required here
as even if the numerical results were approaching the analytic expression, the two could
be related by a non-trivial coordinate transformation. If such a coordinate transformation

25

The NN converges to the known, analytic solution.

Anderson, Gerdes, Gray, Krippendorf,  Raghuram, Ruehle 2020

17



Neural networks for differential equations
Going beyond CY metrics

• Can NN give efficient approximations to PDE solutions?


• Motivation beyond universal approximation scheme (NN can be shown to give good 
and accurate predictions to PDEs):


• Solutions to high-dimensional Schrödinger equations (Rupp, Tkatchenko, Müller, 
von Lilienfeld 2012, …)


• Black-Scholes PDE (Grohs, Hornung, Jentzen, von Wurstemberger 2018, …)


• Approximation rates of NNs to solutions of PDEs (Kutyniok, Petersen, Raslan, 
Schneider 2019, …)


• SimDL workshop at ICLR 2021
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What to do when we do not have domain knowledge? 
Can we use AI to identify the correct domain knowledge?
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Underlying questions: 

Are we missing mathematical/physical structures?

Can we find such structures with ML and then use them?

20
See also: Tegmark et al. (lots of works)



In Chemistry pre 1869?
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In Particle Physics 
pre ~ 60s/70s?
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Which tools do we need to make such  
discoveries with ML in the 2020s?

Finding mathematical structures to 
describe systems more efficiently

Our approach: Symmetries, Dualities, and 
Integrability 
 
Why care for ML systems? Symmetries, 
dualities and integrability are standard 
structures used in physical systems which 
make your life easier (parameter inference, 
predictions from functional bias) 

 good functional bias→

Pattern in Calabi-Yau data

Topological Feature 1

Feature 2

QCDDM Halos

CY-metrics

23



Symmetries from embedding layer

24
Krippendorf, Syvaeri 2020



How to search for symmetries?
The problem

Krippendorf, Syvaeri 2020

Radial direction

1. How to find invariances? 
f(ϕ) = f(ϕ̃)

2. Which symmetry is behind 
such an invariance? f(x, y)

x y

25



How to search for symmetries?
Embedding in deep layer

Krippendorf, Syvaeri 2020

Paris
London

Deep Layer

France
EnglandWord2Vec does it: 

             (England - London = Paris - France)  
 
      [1301.3781, used for re-discovering periodic table 1807.05617,  
        classifying scents of molecules 1910.10685]

We need: group input with the same meaning together

Yes!

Can we search for 
symmetries in this way?

Input

O
ut

pu
t C

la
ss

es

Dimensional Reduction of Embedding

In
pu

t

Cl
as

si
fic

at
io

n

Em
be

dd
in

g 
De

ep
 L

ay
er

Feed-forward network

Examples: SO(2), SU(2), 
discrete symmetries (CICY)
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How to determine the symmetry?

1

1

G =

∑
0.00 °1.00
1.00 0.01

∏

p′ = p + ϵaTap

Connected points in input space:

Which symmetry?

Determine generator connecting points in (sub)-space:

Repeat multiple times (covering 
all sub-spaces) and perform PCA 
on generators:

Krippendorf, Syvaeri 2020

Other Examples?
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Symmetries from data 
(samples of phase space)

28

Krippendorf, Syvaeri (ICLR simDL workshop, 2104.14444)



Simulations and physics bias

• The correct functional expressivity is key (vision: CNNs; geometric deep 
learning). Example for prediction of trajectories: 
 
 
 

29

True Model
Battaglia et al 2016 (1612.00222)  
….

 p
q

 ·p
·q

Input Target

Model(Sequence 
of) images

Model 
(CNN)



AI and Physics for Simulations

 p
q

 ·p
·q

Input Target

Model
 p

q
 ·p = − ∂H

∂q
·q = ∂H

∂p

Biased 
Model H

Krippendorf, Syvaeri (ICLR simDL workshop, 2104.14444)

Greydanus et al. 2019 
…

Physics Bias helps for predictions! Auto-Differentiation

Physics Bias: enforce energy conservation
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Can we learn more structures 
from samples of phase space?

31



More structures from neural networks?

• If we can train NNs to find the Hamiltonian of a system, can we use it to learn other 
interesting structures?


• Symmetries of the system? E.g. via canonical transformations (cyclic coordinates 
reveal conserved quantities)


• How does this work? 2 key steps:

1. Formulate your physics search problem as an optimisation problem.

2. Make sure it’s learnable for your architecture.


• Good news for analytic understanding of numerical approximations: most physics 
functions are simple (AI Feynman [Udrescu, Tegmark 1905.11481])


• Interesting side effect: quantify how much these structures help in predicting 
dynamics

32



AI for Simulations — Symmetries
Introducing physicists’ bias 

 p
q

 ·p = − ∂H
∂q

·q = ∂H
∂p

Biased 
Model H

SCNNs: We cannot only learn the Hamiltonian but also the symmetries 
by enforcing canonical coordinates

Modified Losses: 
        
Additional constraint on motion (not just energy conservation), 
i.e. motion takes place on hyper-surface in phase space

0 = ·Fk(p, q) = {H(p, q), Fk(p, q)}

,  
(Input)
p q

• • Learning Symmetries

Training the neural network

14

{Pi, Pj} = {Qi, Qj} = 0 {Qi, Pj} = δij

·Pi = − ∂ℋ
∂Qi

·Qi = ∂ℋ
∂Pi

·Pi = 0

                  

L = ∥ ∂ℋ
∂p

− ·qtarget∥2

+∥ ∂ℋ
∂q

+ ·ptarget∥2 + . . .

: Canonical 
Transformation Network

Tψ(p, q)

Pcyclic = const .

Qcyclic

, Pother Qother
 

Hamiltonian Network
ℋϕ(Pcyclic, Pother, Qother) ,  

(Output)

·p = −
∂ℋϕ

∂q
·q =

∂ℋϕ

∂p

Krippendorf, Syvaeri 2104.14444 33



AI for Simulations — Symmetries
Introducing physicists’ bias 

SCNNs: We cannot only learn the Hamiltonian but also the symmetries 
by enforcing canonical coordinates

Modified Losses for canonical coordinates: 

• Hamilton equations:          and       


• Poisson algebra:                and        

·Pi(p, q) = − ∂H(p, q)
∂Qi(p, q) = 0 ·Qi(p, q) = ∂H(p, q)

∂Pi(p, q)
{Pi, Qj} = δij {Pi, Pj} = {Qi, Qj} = 0

,  
(Input)
p q

• • Learning Symmetries

Training the neural network

14

{Pi, Pj} = {Qi, Qj} = 0 {Qi, Pj} = δij

·Pi = − ∂ℋ
∂Qi

·Qi = ∂ℋ
∂Pi

·Pi = 0

                  

L = ∥ ∂ℋ
∂p

− ·qtarget∥2

+∥ ∂ℋ
∂q

+ ·ptarget∥2 + . . .

: Canonical 
Transformation Network

Tψ(p, q)

Pcyclic = const .

Qcyclic

, Pother Qother
 

Hamiltonian Network
ℋϕ(Pcyclic, Pother, Qother) ,  

(Output)

·p = −
∂ℋϕ

∂q
·q =

∂ℋϕ

∂p

Krippendorf, Syvaeri 2104.14444
34

Additional Loss terms



Benefits from Physicists’ Bias

• Conserved quantities interpretable:  
 

 

  


• Using learned conserved quantities helps in 
predicting trajectories

Pc1
= − 4.2px1

− 4.2px2
− 1.3py1

− 1.3py2
, Pc2

= − 0.9px1
− 0.9px2

− 3.2py1
− 3.2py2

L = − 1.1qx1
py1

+0.9qx1
py2

+0.9qx2
py1

−1.0qx2
py2

+1.0qy1
px1

−0.9qy1
px2

−0.9qy2
px1

+1.0qy2
px2
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Symmetries  Integrability→

Krippendorf, Lüst, Syvaeri 202136

Can we search for new mathematical/physical structures?



Integrability
A lightning overview

Krippendorf, Lüst, Syvaeri 2021

• Additional constraint  on motion: 
         
How many  can there be?


• System (2n dimensional) integrable iff:  
n independent, everywhere differentiable  
integrals of motion  (in involution).


• Alternatively search for Lax pair: 
             
s.t. eom are satisfied. Conserved quantities 
via: 
                 
(additional condition for )

Fk
0 = ·Fk = {H, Fk}

Fk

Fk

·L = [L, M]

Fk = tr(Lk)
{Fk, Fj} = 0

Example: Harmonic Oscillator 

• Hamiltonian and EOM: 

 ;     ,  

• Lax pair:  

   ,   


• Conserved quantities: 
     
     
     
         …


 

H = 1
2 p2 + ω2

2 q2 ·q = p ·p = − ω2q

L = a (
p bωq

ω
b q −p ) M =

0 b
2 ω

− ω
2b 0

F1 = 2 λ
F2 = 2λ2 + 4H
F3 = 2λ3 + 12λH   spectral parameterλ…
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Integrability
Krippendorf, Lüst, Syvaeri 2021

Beisert: Lecture Notes on Integrability (p17)

Applications: 
- Classical mechanics (e.g. planetary motion) 
- Classical field theories (1+1 dimensions) 
- Spin Chain Models 
- D=4 N=4 SYM in the planar limit 
- …

38
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Formulating the search as optimisation

• Aim: Method to find new Lax pairs with unsupervised learning (i.e. not requiring prior knowledge of a Lax pair)
• Lax equation as loss: 

      ·L = [L, M] → ℒLax = ·L − [L, M]
2

• Equivalence to EOM (e.g. ):  has to include  in some component (LHS of EOM),  has to 
include RHS of EOM 
          ,      

        ,  

·xi = fi (xi, ∂xi, . . . ) L xi [L, M]

ℒL = ∑
i,j

min
k ( | |cijk

·L − ·xk | |2 , | | ·Lij | |2 ) + ∑
k

min
ij ( | |cijk

·Lij − ·xk | |2 ) cijk =
∑batch

·Lij

∑batch
·xk

ℒLM = ∑
i,j

min
k ( | | c̃ijk [L, M]ij − fk | |2 , | | [L, M]ij | |2 ) + ∑

k
min

ij ( | | c̃ijk [L, M]ij − fk | |2 ) c̃ijk =
∑batch [L, M]ij

∑batch fk

• Avoiding mode collapse:  
         ℒMC = max (1 − ∑ Aij ,0)

• Total loss:  
                             ℒLax−pair = α1ℒLax + α2ℒL + α3ℒLM + α4ℒMC

only fixed up to proportionality (loss function independent of refactor)
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Applications
Harmonic Oscillator

• Harmonic Oscillator: 

                                                ;           


• Lax Pair: 
                                         ,   


• Consistency check:  
                                     


• Conserved quantities: 

                               

H = 1
2 p2 + ω2

2 q2 ·q = p , ·p = − ω2q

L = ( 0.437 q −0.073 p
−0.666 p −0.437 q) M = ( 0.001 0.329

−3.043 −0.001)
dL
dt

= ( 0.437 ·q −0.073 ·p
−0.666 ·p −0.437 ·q) = (0.441 p 0.288 q

2.660 q −0.441 p) = [L, M]

L2 = (0.048618p2 + 0.190969q2 0
0 0.048618p2 + 0.190969q2) ⇒ trL2 ≈ 0.2 H
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Applications
Further systems

• Korteweg-de Vries (waves in shallow water): 
 
                


• Heisenberg magnet: 
 
       ,  ; constraint: 




• O(N) non-linear sigma models (Sine-Gordon equation and 
principal chiral model): 
 
                       ,     ,   . 

·ϕ(x, t) + ϕ′ ′ ′ (x, t) + 6ϕ(x, t)ϕ′ (x, t) = 0

H = 1
2 ∫ dx ⃗S 2(x) ⃗S ∈ S2

{Sa(x), Sb(y)} = ϵabcSc(x)δ(x − y)

ℒ = − Tr(JμJμ) Jμ = (∂μg)g−1 μ = 0,1
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Perturbations on integrable systems

• Harmonic Oscillator: 

        


• Are the following perturbations 
integrable: 
       ,    


• Initialise network at known solution for 
unperturbed system and see how it 
reacts to samples from perturbed 
system

H0 =
p2

x + p2
y

2m
+ ω2 (q2

x + q2
y )

H1 = ϵq2
x q2

y H2 = ϵqxqy

: non-integrableH1

: integrableH2

values for ϵ
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Beyond symmetries, are there other structures in theoretical (particle) 
physics? 
 

      Dualities 

Can they be useful in ML? 
Can ML provide new perspectives on dualities?

43

2002.05169 with P. Betzler 

see also: Hashimoto et al. [2018-today] 
DL and Holography



Dualities
2D Ising — Self-duality

Field Theories String Dualities

Holography
Ordered rep.  ↔  Disordered rep.

Tcritical

St
ro

ng
ly 

co
up

le
d 

CF
T

weakly coupled AdS

ZCFT(ϕ) = ZAdS(ϕ)

Application: calculation of 
transport coefficients

D-dim. 
field theory

D+1-dim. 
gravitational theory

Electromagnetic Duality:
T-duality: winding & momentum strings

R 1/R

IIBIIA

E8 × E8SO(32)

11-Dim Supergravity

Type I

M

theory 

         el. charges  mag. monopoles

⃗E ↔ ⃗B
↔

Seiberg Dualities in supersymmetric  
gauge theories:
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Essence of Dualities

Original 
, bkg. Mϕ

Dual 
, bkg.  ϕ̃ M̃

Duality Map

⟨x1…xn⟩
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Essence of Dualities

Original 
, bkg. Mϕ

Dual 
, bkg.  ϕ̃ M̃

Duality Map

⟨x1…xn⟩

Is there a signal under noise?  
Easy to answer in dual  

momentum space 
representation

Position space representation Momentum space representation
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Essence of Dualities

Original 
, bkg. Mϕ

Dual 
, bkg.  ϕ̃ M̃

Duality Map

⟨x1…xn⟩

Which temperature sample is 
drawn from? 

Easy to answer in dual  
high temperature 

representation for 2D Ising

Low-temperature phase High-temperature phase

Betzler, Krippendorf 2020 46



Betzler, Krippendorf 2020

Does a neural network use such transformations automatically?

Connecting Dualities and Machine Learning

No!

DFT Random 
starting point

If not, how can we make use of such transformations?
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1) Latent loss to maximize distance between signal & noise:

Betzler, Krippendorf 2020

Does a neural network use such transformations automatically?

If not, how can we make use of such transformations?

Connecting Dualities and Machine Learning

No!

Assist finding DFT 
with modified loss

, 
 largest square values of outputs

ℒ = max(0,α − ξ2
1 − ξ2

2)
ξ2

i

Fourier

Network Rep.

Figure 14: Interpretation of the activation matrix illustrated in Figure 13. The plotted latent dimen-
sions correspond to the three largest entries of a given row. (Top) Two non-vanishing entries in one
row. The Fourier transform is completely embedded into two latent dimensions. (Bottom) Three
non-vanishing entries in one row. The Fourier transform is nontrivially embedded into three latent
dimensions.

3.2.2 Results and Discussion

We tested the performance in classifying (meta-)stable states using the same setting as before, with
the duality transformation (7) replaced by the intermediate output of a constrained autoencoder with
latent dimension 18 and 50. Details on the experimental conditions are provided in Appendix B; results
are shown in Table 3.

3.2.3 Results

One again observes a siginificant improvement compared to the original representation, albeit not as
drastic as in the actual dual representation. Autoencoders with latent dimension 18 often su↵ered from
underfitting problems, and further benefits were possible when increasing the latent dimension to 50.
Networks trained on the learned representation mostly outperformed accuracies reachable by purely

18

Figure 13: Example plot of an activation matrix (12) for the case N = 100. The columns have been
reordered according to the indices of their respective largest entries. The number of non-vanishing
values in a given row matches with the dimension of the subspace of the 2N -dimensional latent space
into which the representation of signals with a corresponding non-vanishing frequency pi is nontrivially
embedded (cf. Figure 14).

3.2.1 Motivation and Architecture

We have seen that by exchanging the roles of individual spins and their interaction terms, the task of
detecting (meta-)stable states becomes more accessible due to the relevant information being easier to
extract from a lower number of spins in the dual frame. To find such a suitable representation, we here
employ the following strategy: We use the fact that a simple task can be performed very e�ciently in
the dual representation. In this case this is the (trivial) task of energy classification.

By itself, this is not su�cient and we need to ensure that no information is lost in the latent
representation. A viable method to achieve this goal is to use a autoencoder-like architecture whose
bottleneck has (at least) the same dimension as the original input and is required to represent the
data in a way that the total energy can be extracted by a simple linear model. This way, the model
is guaranteed to learn a representation which encodes the energetic properties of a state in a manner
similar to the dual frame (cf. Equation (7)), while at the same time the presence of an additional
reconstruction loss forces the mapping to be bijective.

In practice, this can be implemented by training a neural network to map an input state s1, . . . , sN
to an intermediate output of (at least) the same dimension, which in turn serves as input for a linear
model extracting the total energy of the input state and another network reconstructing the initial
input configuration. Figure 15 illustrates this architecture schematically.

17

Network Features’ Activation

In
pu

t F
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re
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2) Pre-training with medium hard inference task on latent dimension

Betzler, Krippendorf 2020

Does a neural network use such transformations automatically?

If not, how can we make use of such transformations?

Connecting Dualities and Machine Learning

No!

Original Latent/dual rep. Original

Autoencoder
non-local components. The matrix Mij for one such example is presented in figure
17.

1 2 3 4 5 6 7 8 9 10

1

2

3
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1 2 3 4 5 6 7 8 9 10
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10

1

2

3

4

5

Figure 17: Plots of the sensitivity matrix (4.8) for the actual duality transformation
(left) and a learned representation of a constrained autoencoder (right) for N = 10
and n = 2. Both matrices show characteristic nearest neighbor interactions; the
latter contains additional nonlocal components.

Let us also remark that, while it is generally di�cult to find networks which re-
produce the sensitivity picture of the actual duality transformation exactly, many
of them show several of its key features. For the considered case, these commonly
include components fi depending strongly on neighboring pairs of spins and a dis-
tinguished value fN which is highly sensitive to one particular spin. This basically
represents the way the duality transformations (4.6) encode the information of
the original system in that there exist N � 1 terms �i, i = 1, . . . N � 1 describ-
ing the nearest-neighbor interactions and one value �N which does not interact
with the external field and stores the overall sign of the system. Here, the choice
to set �N = sN is somewhat arbitrary (an equivalent example would be to de-
fine �1 = s1, �k = sk�1sk 8k � 2), implying that there exists a whole class of
structurally similar transformations which can be learned by the autoencoders.

5 Conclusions and Outlook

[Placeholder]

31

Actual Dual variables Intermediate variables

1D Ising Model with multiple spin-interactions:

Feasible task: Energy

Hard inference task: Metastable state

+ +

+ +s
σ

N = 10

n = 3
 normal:      (here: ) 

 

   dual:           where 

H(s) = − J
N−n+1

∑
k=1

n−1

∏
l=0

sk+l − B
N

∑
k=1

sk B = 0

H(σ) = − J
N−n+1

∑
k=1

σk σk =
n−1

∏
l=0

sk+l

Feasible task

Pre-training

Hard task
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Conclusions and Outlook
Learning and using physics bias with ML

• Bias networks with physics knowledge for efficient results: 
(e.g. numerical CY metrics, improving simulations with symmetry constraints)


• Finding the functional bias possible: Learning mathematical structures (e.g. 
metric, Hamiltonian, symmetries) is possible in an unsupervised way when 
“appropriate” loss functions can be identified:

• Symmetries from embedding layer without prior knowledge

• Symmetries from phase space samples


• Machinery for discovery of novel structures in integrability: Currently Lax 
pairs and connections for classical systems. Identify (some) integrable 
perturbations.


• Interpretation/enforcing of latent variables as variables of a dual theory (via 
appropriate losses)
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Thank you!

51

For talks at the interface of physics and ML: physicsmeetsml.org

2012.04656: Numerical CY-Metrics

2104.14444: Simulations with Symmetry Control Neural Networks

2103.07475: Integrability

2003.13679: Symmetries from Embedding Layer



Control via Symmetries

• Losses to ensure appropriate functional forms:  
 

 
 

 

 

ℒHNN =
N⋅d

∑
i=1

∂ℋϕ(P, Q)
∂pi

− dqi

dt
2

+
∂ℋϕ(P, Q)

∂qi
+ dpi

dt
2

ℒPoisson =
N⋅d

∑
i,j=1

{Qi, Pj} − δij
2

+
N⋅d

∑
i,j>i

{Pi, Pj}
2

+ {Qi, Qj}
2

ℒ(n)
HQP =

n

∑
i=1

dPi

dt 2
+ dQi

dt
−

∂ℋϕ(P, Q)
∂Pi 2

+ β
N⋅d

∑
i=n+1

dPi

dt
+

∂ℋϕ(P, Q)
∂Qi 2

+ dQi

dt
−

∂ℋϕ(P, Q)
∂Pi 2

,  
(Input)
p q

• • Learning Symmetries

Training the neural network

14

{Pi, Pj} = {Qi, Qj} = 0 {Qi, Pj} = δij

·Pi = − ∂ℋ
∂Qi

·Qi = ∂ℋ
∂Pi

·Pi = 0

                  

L = ∥ ∂ℋ
∂p

− ·qtarget∥2

+∥ ∂ℋ
∂q

+ ·ptarget∥2 + . . .

: Canonical 
Transformation Network

Tψ(p, q)

Pcyclic = const .

Qcyclic

, Pother Qother
 

Hamiltonian Network
ℋϕ(Pcyclic, Pother, Qother) ,  

(Output)

·p = −
∂ℋϕ

∂q
·q =

∂ℋϕ

∂p

HNN-Loss

Effect of different loss components

Poisson-Loss

52


