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Our purpose in theoretical physics is not to describe the world as we find it,

but to explain - in terms of a few fundamental principles - why the world is
the way it is.

Steven Weinberg

Can ML achieve this? [requiring explainable All

If yes, which NEW physics can we reveal?



Content

Theoretical physics problems made for ML: understanding high-dimensional data

|. Efficient solutions to PDEs (in mathematical physics) with ML

Key: Using domain knowledge/bias in ML ansatz

Example: Numerical Calabi-Yau metrics

1l. How to extract domain knowledge/biases with ML
(e.g. what are the symmetries of a system)

Why high-dimensional data? Large function space of possible solutions



Why ML and physics?

ML can overcome curses of dimensionality

» Efficient functional biases can overcome this curse of dimensionality, e.g.
utilising symmetries of your data

ImageNet competition results

Translation invariance: CNNs
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* Such functional biases (e.g. symmetries) are at the heart of all physics models



Moduli dependent Calabi-Yau and SU(3)-structure metrics from Machine Learning
based on (2012.04656), in collaboration with:

Lara Anderson Mathis Gerdes James Gray Nikhil Raghuram Fabian Ruehle

Finding symmetries and integrable structures of physical systems

and based on (2104.14444, 2103.07475,
2003.13679, 2002.05169),
In collaboration with:

Philip Betzler Marc Syvaeri Dieter List
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How to improve our knowledge of EFTs in string theory with the metric
(hon-holomorphic quantities)?

Metrics with ML

See also: Douglas et al 2012.04797, and Jejjala et al 2012.15821



Metrics matter

 The metric is key In any extra-dimensional physics model \/
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o String compactifications are no exception to this. For instance:

1. Matter kinetic terms (soft-terms, cf. 0906.3297)
2. Moduli potential (D3-brane inflation [probing directly CY-moduli space])
3. Massive string spectrum



Signatures of Quantum Gravity
Metrics in the EFT

How to distinguish these signatures from some bottom-up BSM model?

Characteristic features in the EFTs of theories
with extra dimensions?

Z woduti = k(@) (0d)* + V(¢h)

Understand the string theory EFT better

S = J d*Px \/— det 844D R(g4+D)
M

4+D \ /‘

combined metric

Is this picture true?

General k(¢)-space



Which Metrics?

6D metrics relevant for string theory

e String Theory EOM for 4D /' = 1 Minkowski vacua require a Ricci-flat
Kahler metric (Candelas, Horowitz, Strominger, Witten 1985)

 Which compact spaces do exist with a Ricci-flat Kahler metric?

Calabi-Yau manifolds
(Example today: Quintic hypersurface in P4

* Yau (1977) showed the existence of such a unique Ricci-flat Kahler
metric, but without explicit constructions.

* One definition of CY-threefold: complex threefold admitting a nowhere
vanishing real two-form J, and a complex three form £2 such that:
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Which Metrics?

6D metrics relevant for string theory

» The metric is given as ig ; = J ;

o Simplest examples: complete intersection manifolds in
projective spaces

Quintic hypersurface in P*

» Quintic hypersurface in P*: S IS &
Q ypersu " P& = Y52 +y][a=0
pW(Z) T sz+2+l//HZ — O
Algebraic metrics:
* Holomorphic (f; ,0) form Candelas et al): K = 1/2xIn(k)
Q = - dz.  on patch with (z, = 1) = ZOS /@) Hap 552
apy/(Z)/ 07, _/1\ a @ =
¢ # a, b ¢ = 00K=— kkp — kKp

10



Which Metrics?

Functional bias: algebraic metrics

* |dea: Generalised Fubini Study metrics can approximate the metric of
our choice

Ny
K=1/2zIn(k), k= ) 5,3) Hyg 552)
a, =0
] 1 kk,;—kk;
;= 0,0;K =
gdb a’b 271_ k2

« Embedding into larger projective space (Kodaira embedding): Sa(Z)
polynomials in z,,.

* These metrics provide “basis” of Kahler metrics on X. (Tian: such
Kahler potentials are dense in the space of Kahler potentials)
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Quintic hypersurface in P*
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Metrics are hard without ML

6D metrics relevant for string theory

 Finite distance methods “fail” (Headrick, Wiseman 2009)

o Spectral methods simplify, but they are currently

iInefficient:
1. Single point in moduli space

2. High accuracies become expensive

(Donaldson, Braun, Belidze, Douglas, Ovrut, Karp, Cui, Gray, Lukic, Ashmore, He;

Kachru, Tripathy, Zimet; Headrick and Nasar)

e How about non-Kahler solutions?

e [Jarget on a practical level: metric with reasonable
accuracy for one string compactification ~ O(1 day)

[impossible with non ML algorithms]
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Can Machine Learning help?



Which metric?

What is the optimisation problem

1. Ricci-flatness: (Induced FS is not Ricci-flat):
Ricci tensor: R;; = — d,0; log det g

Cheaper alternative (less derivatives) via Monge-Ampere equation:

_ 1 1 J
JINIANT =k QAQ = Paa = _ J 1 _
J,RAQ Iy K QAQ
2. Kahlerity:
dj=0 o g dund;; Ndy =0= g1 dz; Ndz; A dz;
Cijkzgij,k_gkj,izo — ng=Z“Re(cljk)”n‘FHIm(Cijk)Hn
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3. Well defined across different coordinate patches:
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Our experiments

Overview on what we get to work

* Supervised learning of Kahler potential (data from running
spectral algorithms)
Improvement: moduli dependence of metric

* Unsupervised learning of Kahler potential (using energy
functionals measuring deviation from Ricci-flathess)
Improvement: moduli dependence of metric and efficiency
(no running of spectral methods)

* Unsupervised learning of metric directly (perturbation of
Fubini study metric)

* Metric networks to go beyond Calabi-Yau: here SU(3)
structure manifolds, i.e. more general string backgrounds
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Learning H

Optimising with ¢ (no Donaldson)

)—|
l

Model

earnable parameters £

1 " 1
* k=6 (42025 components in H), sampling fast and always using new points ¢ = = 1 =
[LRAQ x| x QAQ
109 -
] Accuracy for e Neehra o
. DenseModel-1 ] P ///% gebraic metrics:
% DenseModel-2 | : P K = 1/27In(k)
+ Donaldson k=6 | i T Ne oo L
-+- Extrapolation from g = 100 ot K= 2 $a(2) Hoj Sp(2)
: : : : -l IR / et a,p=0
/7 : //+/
o S _ I kk;—kk;
4 8ap = 005K =
1071 - A _ ; 2 k2
: I v
' " 7
:g‘? e — /
_ ~_ g / Quintic hypersurface in [P*:
IASS'S L
— \:}i//%/ d+1 d+1
. . — — p (Z)z Zid+2+l// Zl‘=0
10! 102 103 : g:j 1}

Trained




Beyond Calabi-Yau Metrics with ML

Anderson, Gerdes, Gray, Krippendorf, Raghuram, Ruehle 2020

 Approach of learning metric directly allows to search for metrics with different properties

* Philosophy: modified loss functions, additionally learned outputs.

 Augment the landscape of metrics to G2 and SU(3) structure manifolds? Phenomenologically necessary,
otherwise missing large parts of string theory constructions; unexplored mathematical structures.

 Example SU(3) structure manifolds (simple example works)

modification of loss: dJ(g) =0 — dJ(g) = W, A J(g) Donaldson
. ’ Kahler Metric
Average loss per epoch Headrick & otential Direct
102 @ oo | Nassar P y
Monge-Ampere | - - -
B Fixed pomt N v v v
Overl \ Moduli Space
verlap |
lotal | Moduli X
Dependence | (interpolation) v v
Non Kahler X X v
109 LT :
0 24 6 8101214161820222426283032343638404244464850 17 Analytlc X X X
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Neural networks for differential equations
Going beyond CY metrics

 Can NN give efficient approximations to PDE solutions?

* Motivation beyond universal approximation scheme (NN can be shown to give good
and accurate predictions to PDEs):

e Solutions to high-dimensional Schrodinger equations (Rupp, Tkatchenko, Mdlller,
von Lilienfeld 2012, ...)

e Black-Scholes PDE (Grohs, Hornung, Jentzen, von Wurstemberger 2018, ...)

o Approximation rates of NNs to solutions of PDEs (Kutyniok, Petersen, Raslan,
Schneider 2019, ...)

» SiImDL workshop at ICLR 2021
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What to do when we do not have domain knowledge?
Can we use Al to identify the correct domain knowledge?

19



Underlying questions:

Are we missing mathematical/physical structures?

Can we find such structures with ML and then use them?

See also: Tegmark et al. (lots of works)
20



In Chemistry pre 1869?

Group =1 2 3 4 5 6 7 3 9 10 11 12 13 14 15 16 17 18

Period
v
1 1 2
H He
> | 3| 4 si{lell 7] 81 9lli0
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Significance

Motivated by the recent achievements of artificial intelligence (Al) in linguistics, we design
Al to learn properties of atoms from materials data on its own. Our work realizes
knowledge representation of atoms via computers and could serve as a foundational step
toward materials discovery and design fully based on machine learning.
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In Particle Physics
pre ~ 60s/70s?
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Which tools do we need to make such

discoveries with ML In the 2020s?

DM Halos

Pattern in Calabi-Yau data
A

, Feature 2

Topological Feature 1

CY-metrics

N 4
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Finding mathematical structures to
describe systems more efficiently

Our approach: Symmetries, Dualities, and
Integrability

Why care for ML systems? Symmetries,
dualities and integrability are standard
structures used in physical systems which
make your life easier (parameter inference,
predictions from functional bias)

— good functional bias



Symmetries from embedding layer



Krippendorf, Syvaeri 2020

How to search for symmetries?
The problem

1. How to find invariances?

f@) = fip)

2. Which symmetry is behind
such an invariance?
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How to search for symmetries?
Embedding in deep layer

We need: group input with the same meaning together

Word2Vec does It:

(England - London = Paris - France)

[1301.3781, used for re-discovering periodic table 1807.05617,
classifying scents of molecules 1910.10685]

Examples: SO(2), SU(2),
discrete symmetries (CICY)

Krippendorf, Syvaeri 2020
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How to determine the symmetry?

Points: 200, r~ N(1, 0.05), e=0.3

C ints in i N
onnected points Iin input space: o %
A

0- 0

3, ¢

Which symmetry? % ad

1- o [0.00 —1.00]

1.00 0.01

Determine generator connecting points in (sub)-space:

a

p'=p+eTI

=
N
1

=
o
1

Repeat multiple times (covering
all sub-spaces) and perform PCA
on generators:

c o 9
~ o 0o
1

Respective Standard Deviation
o
N

@  J
1 2 3 4
PCA-Component

o
o
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Krippendorf, Syvaeri 2020
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Respective Standard Deviation
o
=

Other Examples?

SU(2) generators

0.3 -

o
o
1

—e— Points: 500, r~ N(1,0.01), e=0.3
—e— Points: 1000, r~ N(1,0.01), e=0.3
—e— Points: 5000, r~ N(1, 0.05), £e=0.3

1 23456 7 8 9 1011121314 15 16
PCA-Component

S0(4) generators

—&— Points: 500, r~ N(1,0.01), e=0.3
—8— Points: 1000, r~ N(1,0.01), e=0.3
—8— Points: 5000, r~ N(1,0.1), e=0.3

Respective Standard Deviation

1 2 3456 7 8 9 1011121314 15 16
PCA-Component

SO(3) generators

—e— Points: 100, r~ N(1,0.01), e=0.3
—e— Points: 200, r~ N(1,0.01), e=0.3
—e— Points: 1000, r~ N(1,0.1), e=0.3
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Symmetries from data
(samples of phase space)



Simulations and physics bias

* The correct functional expressivity is key (vision: CNNs; geometric deep

learning). Example for prediction of trajectories:

True

~

\_

~

(Sequence
of) images

J

Model

Battaglia et al 2016 (1612.00222)



Greydanus et al. 2019

Al and Physics for Simulations

Grav. 2-body system

Ground
truth
Physics Bias helps for predictions! Auto-Differentiation
Input Target \‘
— S e A (o
p p Biased P
dq
7 | (ocer | ! L[esed LoL 0 E =
q q q Model §=— Baseline "~y
K_) \ ) \_ p) / //' N \\
II \\
I i
f :
Physics Bias: enforce energy conservation \ 7
\::\\\\\\ . S/ //
H I\II\\I "::;‘*ia ]
. RN
9/'/ \\.§
,I:IZ/'/ \\\t\\\s‘
~:'I:I ‘v‘|‘|
i i
\ 1,
\\\:\\\\\‘\Q 4/,;'//’,
M 5
§£:111=/’

30 Krippendorf, Syvaeri (ICLR simDL workshop, 2104.14444)



Can we learn more structures
from samples of phase space?




More structures from neural networks?

* |f we can train NNs to find the Hamiltonian of a system, can we use it to learn other
interesting structures?

o Symmetries of the system? E.g. via canonical transformations (cyclic coordinates
reveal conserved quantities)

 How does this work? 2 key steps:
1. Formulate your physics search problem as an optimisation problem.
2. Make sure it’s learnable for your architecture.

 (Good news for analytic understanding of numerical approximations: most physics
functions are simple (Al Feynman [Udrescu, Tegmark 1905.11481])

* |nteresting side effect. quantify how much these structures help in predicting
dynamics
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Grav. 2-body system

= = = Ground
Al for Simulations — Symmetries
| | | , |
Introducing physicists’ bias
SCNNs: We cannot only learn the Hamiltonian but also the symmetries e

by enforcing canonical coordinates paseline ™ n
7 \
r 2 (_ o : |

p Biased =" \ ,

- = H |=»| on L\, /
Model 4=— R 2
N y p NN /:/:i

_ HNN =™ “*=s,
p’ q —> Tw(p’ (I): Ganonical +( Pother’ (20ther )+ %qb(Pcyclic’ Pother’ Qother) — p T _d)’ q - _¢ ’ZZI \\‘\:“
(Input) Transformation Network ~ Hamiltonian Network (gq tput) op 5,':: \‘r:‘l
\- / Qc clic - / - it J ‘:‘:\l‘\ ﬁZ"
\§§i:§\1y/};l
Modified Losses: SCNN ““<%u
_ ° _ //' \\

O — Fk(pa Q) — {H(pa Q)aFk(pa Q)} ,’/ ‘\

" . . . . ; \
Additional constraint on motion (not just energy conservation), \ }

l.e. motion takes place on hyper-surface in phase space ‘\ Vi

Krippendorf, Syvaeri 2104.14444 33



Grav. 2-body system

= = = Ground
Al for Simulations — Symmetries
Introducing physicists’ bias
SCNNs: We cannot only learn the Hamiltonian but also the symmetries ===
by enforcing canonical coordinates JBaseline ™~
7 \
~ ~ / @c}’clic = CODSO \ - ~ :\‘ :':
p! q —> T‘//(p’ q) Canonical ->( P ther? Q th )" H qb(Pcyclic’ Pother’ Qother) — | PpP=-— %, q= % ::\\\ //II ‘
(Input) kTransformation Network) ~Z - Hamiltonian Network (?)?Jtput) op ‘\\‘\::\ // //
. _ J U y SNt S
Modified Losses for canonical coordinates:
| OH(p, q) . H(p, )\ | S\
* Hamilton equations: | P,(p,q) = 247 _ 0 and Qip,q) = P-4 s —
aQi(pa Q) aPl(pa Q) SCNN “===5,
. p \\
* Poisson algebra: (P, 0} =06; and {P,P}={0,0}=0 / \
! ;
\ ,'
\‘\ //I
Krippendorf, Syvaeri 2104.14444 Additional Loss terms S g
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Benefits from Physicists’ Bias

 Conserved quantities interpretable:

P =— 4-2le — 4-2sz — 1.3py1 — 1.3py2 ] PC2 = — 0-9le — O.9px2 — 3.2py1 — 3.2py2

Cq

L =-1.1¢, p, +0.9¢, p, +0.9q, p, —1.0g, p, +1.0g, p, —0.9¢q, p, —0.9¢, p, +1.0q, p,

* Using learned conserved quantities helps In
predicting trajectories
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Can we search for new mathematical/physical structures?

Symmetries — Integrability

26 Krippendorf, Lust, Syvaeri 2021



Krippendorf, Lust, Syvaeri 2021

Integrability

A lightning overview

« Additional constraint F; on motion: Example: Harmonic Oscillator

e Hamiltonian and EOM:
How many F; can there be? 1 )

* System (2n dimensional) integrable iff: 2 2
n independent, everywhere differentiable

integrals of motion £, (in involution). + Lax parr i
p bwg 0 S W
» Alternatively search for Lax pair: L=a (ﬂ —p > “l_e
L =[L M) b 2
s.t. eom are satisfied. Conserved quantities * Conserved quantities:
via: Fi=2A4
F, = tr(L") F, =2A*+4H

(additional condition for {Fk, F}} — O) F3 — Zﬂﬁ -+ 12/1H A... spectral parameter
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Krippendorf, Lust, Syvaeri 2021

Integrability

e

/

[ Having a Lax pair formulation of integrability is very convenient, but

\We need some deus ex machina moment...

inspiration is needed to find it,
its structure is hardly transparent, % , ‘\
it is not at all unique, oy
the size of the matrices is not immediately related to the dimensionality of the
system.

Therefore, the concept of Lax pairs does not provide a means to decide whether
any given system is integrable (unless one is lucky to find a sufficiently large Lax

air).
pair) Beisert: Lecture Notes on Integrability (p17)J

Applications:
- Classical mechanics (e.g. planetary motion)
- Classical field theories (1+1 dimensions)

- Spln Chain Models Nonlinear Sciences > Exactly Solvable and Integrable Systems
- D=4 N=4 SYM in the planar limit [submitted on 12 Mar 2021]
_ Integrability ex machina

K J Sven Krippendorf, Dieter Lust, Marc Syvaeri

38



Formulating the search as optimisation

Aim: Method to find new Lax pairs with unsupervised learning (i.e. not requiring prior knowledge of a Lax pair)
Lax equation as loss:

L=[LM -, = |L— [L,M]|2

Equivalence to EOM (e.g. X; = J; (xl-, ox,, . .. )): L has to include x; in some component (LHS of EOM), [L, M| has to
include RHS of EOM

. N ST . .0 2 paren Lis
ngzmln<HCljkL—ka ,HLZJH )+Zmln<HCljkLlJ_ka )! Cljkz atch .lJ
i k I U zbaztch A
’ . ~ 2 2 . ~ 2 - Zbatch L, M]ij
P =Y min ([1&5 LM~ fil P LM P ) + Y min (165 (LM~ £l 7). 5=
. ij v v Y N A Lparcn i
AVOIdmg mode Collapse: only fixed up to proportionality (loss function independent of refactor)

P\ = max (1 = |Aij| ,0)

Total loss:

Zz Lax—pair — alg Lax T 0‘23 LT a3°cz LM T a4°<Z MC
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Applications

Harmonic Oscillator

e Harmonic Oscillator: ,
1

W

2 2
(97 003 py o (0001 0.329
—0.666 p —0.437 q )’ —3.043 —0.001

q- g=p, p=-w4q

e [ax Pair:

* Consistency check:

dL (0437¢ -0.073p\ (0441p 0.288¢
dt  \—0.666 p —0437¢g) \2.660¢g —0.441p

* Conserved quantities:
i (0.048618p2 +0.1909694> 0
L —_

) = [L,M]

— = trl?~ 02 H
0 0.048618p* + 0.190969¢°
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Applications

Further systems

| | 4 17 174+10
» Korteweg-de Vries (waves in shallow water): T \17g+1.0  —179 )
: . / A 5.00% + 1.7¢" —5.00%2 —1.7¢" — 0.5
Ox, 1)+ Q" (x, 1)+ 6(x,)p'(x,1) =0 T\ 25.002 - 179" =05 5.042+1.7¢"
* Heisenberg magnet:
1 Ax=—15’§+0.3(é 2)
—, —
H=—|dxS?*x), S € 57 constraint: o 218 208425,
p) "\ 2i8,-25, -iS8,
{S a(X), Sb(y)} — Gach C(x)é(x — y) n ( +5;Sm—iszii_ii(gjgj_s;sw) —SszJ: fi; +1 (isgfgy— S,Sz) )

. =~ . /
=2105 + 1¢€,;,0:5;5; ,

* O(N) non-linear sigma models (Sine-Gordon equation and
principal chiral model):

L =-Te(JJ", J,=00,8g ", u=0,1.
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Perturbations on integrable systems

e Harmonic Oscillator:

p; +D;
Hy=—2

— 1.0

+ o’ (%? + g, ) o

2m 7 R — 001
10_2é ;;'""""'"""""'"""""‘."':'«3-".;:-,w,u i — 0.001
* Are the following perturbations % 103 ] — 00
integrable: R | ———————— values for e
— 2,2 _ 5
Hl — ¢4x qY’ H2 _ quQy 107 5 H,: integrable
1071 M o s AL M‘ A
iy . . 1 VK o ‘»( % ‘ HTEANE
* Initialise network at known solution for o AL R
unperturbed SyStem and SEC hOW It (I) 1O(I)OO 20(|)OO 30(I)OO 40600 SO(I)OO 60(|)OO 7O(I)OO 80(I)OO
reacts to samples from perturbed steps
system
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Beyond symmetries, are there other structures in theoretical (particle)
physics?

Dualities

Can they be useful in ML?
Can ML provide new perspectives on dualities?

2002.05169 with P. Betzler

see also: Hashimoto et al. [2018-today]
DL and Holography
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Dualities

2D Ising — Self-duality N

Ordered rep. < Disordered rep.

Tcritical

\_

(=] N =) o o)
'S A 'S A

Field Theories

Electromagnetic Duality:

E~B

el. charges <> mag. monopoles

\_

00 25 50 75 100 125 15.0)

Seiberg Dualities in supersymmetric
gauge theories:

/ Holography I

Strongly coupled CFT

weakly coupled AdS

ZCFT(¢) — ZAds(¢)

D-dim. D+1-dim.

field theory gravitational theory

Application: calculation of
transport coefficients

J

String Dualities I
T-duality: winding & momentum strings Type |
< > O 1A 1B
— 4&—A
D <
_— SO(32) E, X E
T ©

R 1/R
44
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Essence of Dualities

~

Duality Map

—

" Dual "
¢ ,bkg. M

(X1...X,)



Essence of Dualities

Position space representation

Position space: real part (signal)

0 200 400 600 800 1000

Position space: real part (no signal)

0 200 400 600 800 1000

Position space: imaginary part (signal)

0 200 400 600 800 1000
Position space: imaginary part (no signal)

0 200 400 600 800 1000

Duality Map

—

(X1...X,)

Is there a signal under noise?

Easy to answer in dual
momentum space
representation
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Momentum space representation

Momentum space: real part (signal)

0 200 400 600 800 1000
Momentum space: real part (no signal)

0 200 400 600 800 1000

Momentum space: imaginary part (signal)

0 200 400 600 800 1000

Momentum space: imaginary part (no signal)

0 200 400 600 800 1000




Essence of Dualities

Duality Map

—

Low-temperature phase (X100 X,) High-temperature phase
16001 @ = 0. 250 A o ‘ - T=05
‘..oo : $=8.35 i @ oo . - T=0.75
1 - e T=1.0 . , . . T=1.0
7 LI . To125 Which temperature sample is | ¢ 2o ' T=125
©oetil., CoT=1 2 T=4s
S 1580- Bl ot drawn from? =
N il N 107
Q1570 siiiii : @
c i, Easy to answer in dual S oo
) , o
S 1960 Ceeeel high temperature s
1550 - . representation for 2D Ising a
1540 L__ | | | | | : - 01
—3200 -3175 —3150 —3125 -3100 —3075 —3050 —3025 _1200 -1000 —800 —600 —400 —200 0
Energy Energy

Betzler, Krippendorf 2020 46



Connecting Dualities and Machine Learning

LDOGS a neural network use such transformations automatically? m

T

If not, how can we make use of such transformations?

Betzler, Krippendorf 2020
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Connecting Dualities and Machine Learning

Does a neural network use such transformations automatically? m

If not, how can we make use of such transformations?

1) Latent loss to maximize distance between signal & noise:

< = max(0,a — 512 — 522),

cfl.z largest square values of outputs

Assist finding DFT
with modified loss

%o bt

Network Rep, 0s|

0.5 1 - ° s

00 - Fourier .

0.5 1 4 054 e e

0.0 1

- . ) &)
L0 ¢ -1.0 - * .

Betzler, Krippendorf 2020

Input Feature

25

Feature Separation - Activation Matrix

50 75 100 125 150

Network Features’ Activation
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Connecting Dualities and Machine Learning

1D Ising Model with multiple spin-interactions:

Does a neural network use such transformations automatically? m Feasible task: Energy
Hard inference task: Metastable state

If not, how can we make use of such transformations? A V o—e m\i oo N =
O ——um—8—8—8 88— nN=
2) Pre-training with medium hard inference task on latent dimension Nl n=l
normal: H(s)=—J Z H Sk+l_BZSk (here: B = ()
k=1 [=0
Autoencoder N—nt1 -1

dual: H(o)=—-J Z o, Where ¢, = Hsk+l
k=1 =0

m—> Latent/dual rep. —>m

Pre-training *
Hard task

Betzler, Krippendorf 2020 . Actual Dual variables Intermediate variables

Feasible task




Grav. 2-body system
Ground

Conclusions and Outlook

Learning and using physics bias with ML

‘Baseline -~

* Bias networks with physics knowledge for efficient results: /o )
(e.g. numerical CY metrics, improving simulations with symmetry constraints) |/ “.

* Finding the functional bias possible: Learning mathematical structures (e.qg.
metric, Hamiltonian, symmetries) is possible in an unsupervised way when AN
“appropriate” loss functions can be identified: H\N\\I\\I::::;% —
* Symmetries from embedding layer without prior knowledge Na
» Symmetries from phase space samples

 Machinery for discovery of novel structures in integrability: Currently Lax ,
pairs and connections for classical systems. ldentify (some) integrable e
perturbations. SCNN R

* Interpretation/enforcing of latent variables as variables of a dual theory (via / 4
appropriate losses) | /

-~
~~~~~~~
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Thank you!

2012.04656: Numerical CY-Metrics
2104.14444. Simulations with Symmetry Control Neural Networks

2103.07475: Integrabillity
2003.13679: Symmetries from Embedding Layer

For talks at the interface of physics and ML: physicsmeetsml.org
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Control via Symmetries

* | osses to ensure appropriate functional forms:

N-d
ZHUNN = Z
i=1

_|_

2

0qi dt )

N-d N-d
gPoissonz 2 H {Qi’Pj} _éij H 2+ 2 H {Pi’Pj} H 2+ H {Qi, Q]} H )

iji=1

n

(n) _—
Z HQP ~ Z
i=1

L (Input) y

i, j>i
dP, dQ, O ,(P,Q) Nd |l ap,
__ ! + Ql _ ¢ _|_ﬁ 2 — L4
dt X dt oP; . dt
9) i=n+1

1,,(p, q): Canonical

Transformation Network

/ @cyclie = COHSO \
"( Pother’ Qother )+

> (Quyerc)

0K 4P, Q)

00;

Hamiltonian Network

4 qb(Pcyclic’ Pother9 Qother) — | I

Effect of different loss components

0.6 0.8 1.0
oP.
oq op
g (Output) y

1.4

1.2

HNN-Loss
Poisson-Loss



