Theoretical Physicists' Biases Meet Machine Learning

Using and finding functional bias in ML for mathematical physics systems
29.10.2021, IAIFI Colloquium

Our purpose in theoretical physics is not to describe the world as we find it, but to explain - in terms of a few fundamental principles - why the world is the way it is.

Steven Weinberg

Can ML achieve this? [requiring explainable Al]

If yes, which NEW physics can we reveal?

Content

Theoretical physics problems made for ML: understanding high-dimensional data
I. Efficient solutions to PDEs (in mathematical physics) with ML

Key: Using domain knowledge/bias in ML ansatz
Example: Numerical Calabi-Yau metrics
II.

How to extract domain knowledge/biases with ML (e.g. what are the symmetries of a system)

Why ML and physics?
 ML can overcome curses of dimensionality

- Efficient functional biases can overcome this curse of dimensionality, e.g. utilising symmetries of your data

Translation invariance: CNNs

- Such functional biases (e.g. symmetries) are at the heart of all physics models

Moduli dependent Calabi-Yau and SU(3)-structure metrics from Machine Learning based on (2012.04656), in collaboration with:

Lara Anderson

Mathis Gerdes

James Gray

Nikhil Raghuram

Fabian Ruehle

Finding symmetries and integrable structures of physical systems
and based on (2104.14444, 2103.07475, 2003.13679, 2002.05169), in collaboration with:

Marc Syvaeri

Dieter Lüst

How to improve our knowledge of EFTs in string theory with the metric (non-holomorphic quantities)?

Metrics with ML

Metrics matter

- The metric is key in any extra-dimensional physics model

$$
S=\int_{M_{4+D}} d^{4+D} x \sqrt{-\operatorname{det} g_{4+D}} R\left(\underset{4+D}{g_{4+D}}\right)
$$

- String compactifications are no exception to this. For instance:

1. Matter kinetic terms (soft-terms, cf. 0906.3297)
2. Moduli potential (D3-brane inflation [probing directly CY-moduli space])
3. Massive string spectrum

Signatures of Quantum Gravity

Metrics in the EFT

How to distinguish these signatures from some bottom-up BSM model?

Characteristic features in the EFTs of theories with extra dimensions?

$$
\mathscr{L}_{\text {moduli }}=k(\phi)(\partial \phi)^{2}+V(\phi)
$$

Understand the string theory EFT better

Is this picture true?

Stringy $k(\phi)$-space

$$
S=\int_{M_{4+D}} d^{4+D} x \sqrt{-\operatorname{det} g_{4+D}} R\left(g_{4+D}\right)
$$

Which Metrics?

6D metrics relevant for string theory

- String Theory EOM for 4D $\mathcal{N}=1$ Minkowski vacua require a Ricci-flat Kähler metric (Candelas, Horowitz, Strominger, Witten 1985)
- Which compact spaces do exist with a Ricci-flat Kähler metric?

Calabi-Yau manifolds

(Example today: Quintic hypersurface in \mathbb{P}^{4})

- Yau (1977) showed the existence of such a unique Ricci-flat Kähler metric, but without explicit constructions.
- One definition of CY-threefold: complex threefold admitting a nowhere vanishing real two-form J , and a complex three form Ω such that:

$$
J \wedge \Omega=0, J \wedge J \wedge J=\frac{3 i}{4} \Omega \wedge \bar{\Omega}, d J=0, d \Omega=0
$$

Which Metrics?

6D metrics relevant for string theory

- The metric is given as $i g_{a \bar{b}}=J_{a \bar{b}}$
- Simplest examples: complete intersection manifolds in projective spaces

Quintic hypersurface in \mathbb{P}^{4} :
$p_{\psi}(\vec{z})=\sum_{i=0}^{d+1} z_{i}^{d+2}+\psi \prod_{i=0}^{d+1} z_{i}=0$

Algebraic metrics:
$K=1 / 2 \pi \ln (\mathbf{k})$
$\mathbf{k}=\sum_{\alpha, \bar{\beta}=0}^{N_{k}} s_{\alpha}(\vec{z}) H_{\alpha \bar{\beta}} \bar{s}_{\bar{\beta}}(\overrightarrow{\bar{z}})$
$g_{a \bar{b}}=\partial_{a} \bar{\partial}_{\bar{b}} K=\frac{1}{2 \pi} \frac{\mathbf{k} \mathbf{k}_{a \bar{b}}-\mathbf{k}_{a} \mathbf{k}_{\bar{b}}}{\mathbf{k}^{2}}$

Which Metrics?

Functional bias: algebraic metrics

- Idea: Generalised Fubini Study metrics can approximate the metric of our choice

$$
\begin{aligned}
& K=1 / 2 \pi \ln (\mathbf{k}), \mathbf{k}=\sum_{\alpha, \bar{\beta}=0}^{N_{k}} s_{\alpha}(\vec{z}) H_{\alpha \bar{\beta}} \bar{s}_{\bar{\beta}}(\overrightarrow{\bar{z}}) \\
& g_{a \bar{b}}=\partial_{a} \bar{\partial}_{\bar{b}} K=\frac{1}{2 \pi} \frac{\mathbf{k k}_{a \bar{b}}-\mathbf{k}_{a} \mathbf{k}_{\bar{b}}}{\mathbf{k}^{2}}
\end{aligned}
$$

- Embedding into larger projective space (Kodaira embedding): $s_{\alpha}(\vec{z})$ polynomials in z_{a}.
- These metrics provide "basis" of Kähler metrics on X. (Tian: such Kähler potentials are dense in the space of Kähler potentials)

Quintic hypersurface in \mathbb{P}^{4} :
$p_{\psi}(\vec{z})=\sum_{i=0}^{d+1} z_{i}^{d+2}+\psi \prod_{i=0}^{d+1} z_{i}=0$

Algebraic metrics:
$K=1 / 2 \pi \ln (\mathbf{k})$
$\mathbf{k}=\sum_{\alpha, \bar{\beta}=0}^{N_{k}} s_{\alpha}(\vec{z}) H_{\alpha \bar{\beta}} \bar{s}_{\bar{\beta}}(\overrightarrow{\bar{z}})$
$g_{a \bar{b}}=\partial_{a} \bar{\partial}_{\bar{b}} K=\frac{1}{2 \pi} \frac{\mathbf{k k}_{a \bar{b}}-\mathbf{k}_{a} \mathbf{k}_{\bar{b}}}{\mathbf{k}^{2}}$

Metrics are hard without ML

6D metrics relevant for string theory

- Finite distance methods "fail" (Headrick, Wiseman 2009)
- Spectral methods simplify, but they are currently inefficient:

1. Single point in moduli space
2. High accuracies become expensive
(Donaldson, Braun, Belidze, Douglas, Ovrut, Karp, Cui, Gray, Lukic, Ashmore, He; Kachru, Tripathy, Zimet; Headrick and Nasar)

- How about non-Kähler solutions?
- Target on a practical level: metric with reasonable accuracy for one string compactification $\sim \mathrm{O}$ (1 day) [impossible with non ML algorithms]

$\mathrm{k} \sim$ accuracy of spectral resolution

Time to check accuracy of solution σ

Can Machine Learning help?

$$
J \wedge J \wedge J \sim \operatorname{det} g
$$

Which metric?

$$
\Omega=\frac{1}{\partial p_{\psi}(\vec{z}) / \partial z_{b}} \bigwedge_{c=1, \ldots, d} d z
$$

What is the optimisation problem
Monge-Ampere Loss (different metrics)

1. Ricci-flatness: (Induced FS is not Ricci-flat):

Ricci tensor: $R_{i \bar{\jmath}}=-\partial_{i} \bar{\partial}_{\bar{\jmath}} \log \operatorname{det} g$
Cheaper alternative (less derivatives) via Monge-Ampere equation:

$$
J \wedge J \wedge J=\kappa \Omega \wedge \bar{\Omega} \quad \rightarrow \quad \mathscr{L}_{\mathrm{MA}}=\frac{1}{\int_{X} \Omega \wedge \bar{\Omega}} \int_{X}\left|1-\frac{1}{\kappa} \frac{J^{3}}{\Omega \wedge \bar{\Omega}}\right|
$$

2. Kählerity:

$$
\begin{aligned}
& d J=0 \quad \leftrightarrow \quad g_{i \bar{\jmath}, k} d z_{i} \wedge d \bar{z}_{\bar{\jmath}} \wedge d z_{k}=0=g_{i \bar{\jmath}, \bar{k}} d z_{i} \wedge d \bar{z}_{\bar{\jmath}} \wedge d \bar{z}_{\bar{k}} \\
& c_{i j k}=g_{i \bar{\jmath}, k}-g_{k \bar{\jmath}, i}=0 \quad \rightarrow \quad \mathscr{L}_{\mathrm{d} J}=\sum_{i, j, k}| | \operatorname{Re}\left(c_{i j k}\right)| |_{n}+\left|\left|\operatorname{Im}\left(c_{i j k}\right)\right|\right|_{n}
\end{aligned}
$$

3. Well defined across different coordinate patches:

$$
g^{(j)}=T_{i j} \cdot g^{(i)} \cdot T_{i j}^{\dagger}, \quad T_{i j}=\partial \vec{z}^{(i)} / \partial \vec{z}^{(j)} \quad \rightarrow \quad \mathscr{L}_{\text {Transition }}=\frac{1}{d} \sum_{k, j}| | g_{\mathrm{NN}}^{(k)}(\vec{z})-T_{j k}(\vec{z}) \cdot g_{\mathrm{NN}}^{(j)}(\vec{z}) \cdot T_{j k}^{\dagger}(\overrightarrow{\vec{z}})| |_{n}
$$

Our experiments

Overview on what we get to work

- Supervised learning of Kähler potential (data from running spectral algorithms) Improvement: moduli dependence of metric
- Unsupervised learning of Kähler potential (using energy functionals measuring deviation from Ricci-flatness) Improvement: moduli dependence of metric and efficiency (no running of spectral methods)

(no running of spectral methods)
- Unsupervised learning of metric directly (perturbation of Fubini study metric)
- Metric networks to go beyond Calabi-Yau: here SU(3) structure manifolds, i.e. more general string backgrounds

Learning H

Optimising with σ (no Donaldson)

- $\mathrm{k}=6$ (42025 components in H), sampling fast and always using new points

$$
\sigma=\frac{1}{\int_{X} \Omega \wedge \bar{\Omega}} \int_{X}\left|1-\frac{1}{\kappa} \frac{J^{3}}{\Omega \wedge \bar{\Omega}}\right|
$$

Algebraic metrics:

$$
\begin{aligned}
& K=1 / 2 \pi \ln (\mathbf{k}) \\
& \mathbf{k}=\sum_{\alpha, \bar{\beta}=0}^{N_{k}} s_{\alpha}(\vec{z}) H_{\alpha \bar{\beta}} \bar{s}_{\bar{\beta}}(\overrightarrow{\bar{z}}) \\
& g_{a \bar{b}}=\partial_{a} \bar{\partial}_{\bar{b}} K=\frac{1}{2 \pi} \frac{\mathbf{k} \mathbf{k}_{a \bar{b}}-\mathbf{k}_{a} \mathbf{k}_{\overline{\bar{b}}}}{\mathbf{k}^{2}}
\end{aligned}
$$

Quintic hypersurface in \mathbb{P}^{4} :

$$
p_{\psi}(\vec{z})=\sum_{i=0}^{d+1} z_{i}^{d+2}+\psi \prod_{i=0}^{d+1} z_{i}=0
$$

Beyond Calabi-Yau Metrics with ML

- Approach of learning metric directly allows to search for metrics with different properties
- Philosophy: modified loss functions, additionally learned outputs.
- Augment the landscape of metrics to G2 and SU(3) structure manifolds? Phenomenologically necessary, otherwise missing large parts of string theory constructions; unexplored mathematical structures.
- Example SU(3) structure manifolds (simple example works)

Neural networks for differential equations
 Going beyond CY metrics

- Can NN give efficient approximations to PDE solutions?
- Motivation beyond universal approximation scheme (NN can be shown to give good and accurate predictions to PDEs):
- Solutions to high-dimensional Schrödinger equations (Rupp, Tkatchenko, Müller, von Lilienfeld 2012, ...)
- Black-Scholes PDE (Grohs, Hornung, Jentzen, von Wurstemberger 2018, ...)
- Approximation rates of NNs to solutions of PDEs (Kutyniok, Petersen, Raslan, Schneider 2019, ...)
- SimDL workshop at ICLR 2021

What to do when we do not have domain knowledge?
Can we use Al to identify the correct domain knowledge?

Underlying questions:

Are we missing mathematical/physical structures?

Can we find such structures with ML and then use them?

In Chemistry pre 1869?

Learning atoms for materials discovery

Quan Zhou, Peizhe Tang, Shenxiu Liu, Jinbo Pan, Qimin Yan, and Shou-Cheng Zhang

+ See all authors and affiliations
PNAS July 10, 2018115 (28) E6411-E6417; first published June 26, 2018; https://ddoi.org/10.1073/pnas. 1801181115 Contributed by Shou-Cheng Zhang, June 4, 2018 (sent for review February 2, 2018; reviewed by Xi Dai and Stuart P. Parkin)

$\underset{\text { Period }}{\text { Group }} \rightarrow 1$	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	$\begin{gathered} 18 \\ \hline \begin{array}{c} 2 \\ \mathrm{He} \\ \hline \end{array} \end{gathered}$
1 1 H																	
23 1 1	$\begin{array}{\|c} 4 \\ \mathrm{Be} \end{array}$											5 B	${ }_{6}^{6}$	7 N	8	$\stackrel{9}{\mathrm{~F}}$	10 Ne
311 Na	$\begin{array}{\|l\|} \hline 12 \\ \mathrm{Mg} \\ \hline \end{array}$											13 Al 1	14 Si	15 P	16 5	17 $C l$	18 Ar
419 K	20 Ca	21 Sc	22	V 23	24 Cr	$\begin{array}{\|c\|} \hline 25 \\ \mathrm{Mn} \end{array}$	26	$\begin{aligned} & 27 \\ & \mathrm{CO} \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \\ & \mathrm{Ni} \\ & \hline \end{aligned}$	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	Ar Kr
	38 Sr	Sc	40	41 Nb	42	$\begin{aligned} & 43 \\ & \mathrm{TC} \\ & \hline \end{aligned}$	$\begin{aligned} & 44 \\ & \mathrm{Ru} \\ & \hline \end{aligned}$	$\begin{aligned} & 45 \\ & R h \end{aligned}$	$\begin{aligned} & 46 \\ & \mathrm{Pd} \end{aligned}$	$\begin{array}{\|r\|} \hline 47 \\ \mathrm{Ag} \\ \hline \end{array}$	$\begin{aligned} & 48 \\ & \mathrm{Cd} \\ & \hline \end{aligned}$	49 In	50 50	51 Sb	52	53	54 $\times \mathrm{e}$
655 Cs	56 Ba	* $\begin{gathered}71 \\ \text { Lu }\end{gathered}$	72 Hf	$\begin{aligned} & 73 \\ & \mathrm{Ta} \end{aligned}$	74 W	75 Re	76 Os	77 Ir	$\begin{aligned} & 78 \\ & \mathrm{Pt} \end{aligned}$	$\begin{array}{\|c\|} \hline 79 \\ \mathrm{Au} \\ \hline \end{array}$	$\begin{array}{r} 80 \\ \mathrm{Hg} \\ \hline \end{array}$	81 TI	82 Pb	83	84 Po	85 At	86 Rn
7	$\begin{array}{\|l\|} \hline 88 \\ \text { Ra } \\ \hline \end{array}$	$\begin{gathered} * \\ * \\ * \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 104 \\ \mathrm{Rf} \\ \hline \end{array}$	$\begin{gathered} 105 \\ \mathrm{Db} \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 106 \\ \mathrm{Sg} \\ \hline \end{array}$	$\begin{aligned} & 107 \\ & \mathrm{Bh} \\ & \hline \end{aligned}$	$\begin{array}{\|} \begin{array}{\|c} 108 \\ \mathrm{Hs} \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 109 \\ \mathrm{Mt} \end{array}$	$\begin{array}{\|c\|} \hline 110 \\ \text { Ds } \\ \hline \end{array}$	$\begin{array}{\|l} \hline 111 \\ \mathrm{Rg} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 112 \\ \mathrm{Cn} \\ \hline \end{array}$	$\begin{aligned} & 113 \\ & \mathrm{Nh} \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 114 \\ \mathrm{Fl} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 115 \\ \mathrm{MC} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 116 \\ \mathrm{LV} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 117 \\ \hline \text { Ts } \\ \hline \end{array}$	118 Og
		$* \begin{aligned} & 57 \\ & \mathrm{La} \end{aligned}$	$\begin{aligned} & 58 \\ & \mathrm{Ce} \end{aligned}$	$\begin{aligned} & 59 \\ & \mathrm{Pr} \end{aligned}$	$\begin{aligned} & 60 \\ & \mathrm{Nd} \end{aligned}$	$\begin{array}{\|l\|} \hline 61 \\ \mathrm{Pm} \end{array}$	$\begin{aligned} & \hline 62 \\ & \mathrm{Sm} \end{aligned}$	$\begin{aligned} & 63 \\ & \mathrm{Eu} \\ & \hline \end{aligned}$	$\begin{aligned} & 64 \\ & \mathrm{Gd} \end{aligned}$	$\begin{aligned} & 65 \\ & \mathrm{~Tb} \end{aligned}$	$\begin{aligned} & 66 \\ & \text { Dy } \end{aligned}$	$\begin{aligned} & \hline 67 \\ & \text { Ho } \end{aligned}$	$\begin{aligned} & 68 \\ & \mathrm{Er} \end{aligned}$	$\begin{array}{\|l\|} \hline 69 \\ \mathrm{Tm} \end{array}$	70 Yb		
		* 89	$\begin{aligned} & 90 \\ & \hline \end{aligned}$	91 Pa	42	$\begin{aligned} & 93 \\ & \mathrm{~Np} \\ & \hline \end{aligned}$	94 Pu	$\begin{aligned} & 95 \\ & \text { Am } \end{aligned}$	$\begin{array}{\|c\|} \hline 96 \\ \mathrm{Cm} \\ \hline \end{array}$	97 Bk	$\begin{aligned} & 98 \\ & \mathrm{Cf} \\ & \hline \end{aligned}$	99 Es	$\begin{array}{\|c\|} \hline 100 \\ \mathrm{Fm} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 101 \\ \mathrm{Md} \\ \hline \end{array}$	102 No		

Significance

Motivated by the recent achievements of artificial intelligence (Al) in linguistics, we design Al to learn properties of atoms from materials data on its own. Our work realizes
knowledge representation of atoms via computers and could serve as a foundational step toward materials discovery and design fully based on machine learning.

In Particle Physics pre ~ 60s/70s?

$$
\begin{aligned}
& \mathcal{L}=-\frac{1}{4} F_{N \nu} F^{N N} \\
& +i \bar{X} \nmid+h_{c} \\
& +x_{i} y_{i j} x_{j} \phi_{+1} \\
& +\left|D_{\mu} \phi\right|^{2}-V(\phi)
\end{aligned}
$$

Which tools do we need to make such discoveries with ML in the 2020s?

Pattern in Calabi-Yau data

CY-metrics

Finding mathematical structures to describe systems more efficiently

Our approach: Symmetries, Dualities, and Integrability

Why care for ML systems? Symmetries, dualities and integrability are standard structures used in physical systems which make your life easier (parameter inference, predictions from functional bias)
\rightarrow good functional bias

Symmetries from embedding layer

How to search for symmetries?

The problem

1. How to find invariances?

$$
f(\phi)=f(\tilde{\phi})
$$

2. Which symmetry is behind such an invariance?

How to search for symmetries?
 Embedding in deep layer

We need: group input with the same meaning together
Word2Vec does it:
(England - London = Paris - France)
[1301.3781, used for re-discovering periodic table 1807.05617,
 classifying scents of molecules 1910.10685]

How to determine the symmetry?

Connected points in input space:

Which symmetry?

Other Examples?

Determine generator connecting points in (sub)-space:

$$
p^{\prime}=p+\epsilon_{a} T^{a} p
$$

Repeat multiple times (covering all sub-spaces) and perform PCA on generators:

Symmetries from data (samples of phase space)

Simulations and physics bias

- The correct functional expressivity is key (vision: CNNs; geometric deep learning). Example for prediction of trajectories:

AI and Physics for Simulations

Physics Bias helps for predictions!

Can we learn more structures from samples of phase space?

More structures from neural networks?

- If we can train NNs to find the Hamiltonian of a system, can we use it to learn other interesting structures?
- Symmetries of the system? E.g. via canonical transformations (cyclic coordinates reveal conserved quantities)
- How does this work? 2 key steps:

1. Formulate your physics search problem as an optimisation problem.
2. Make sure it's learnable for your architecture.

- Good news for analytic understanding of numerical approximations: most physics functions are simple (AI Feynman [Udrescu, Tegmark 1905.11481])
- Interesting side effect: quantify how much these structures help in predicting dynamics

Al for Simulations - Symmetries

Introducing physicists' bias

SCNNs: We cannot only learn the Hamiltonian but also the symmetries by enforcing canonical coordinates

Modified Losses:

$$
0=\dot{F}_{k}(p, q)=\left\{H(p, q), F_{k}(p, q)\right\}
$$

Additional constraint on motion (not just energy conservation), i.e. motion takes place on hyper-surface in phase space

Al for Simulations - Symmetries
 Introducing physicists' bias

SCNNs: We cannot only learn the Hamiltonian but also the symmetries by enforcing canonical coordinates

Modified Losses for canonical coordinates:

- Hamilton equations:

$$
\begin{aligned}
& \dot{P}_{i}(p, q)=-\frac{\partial H(p, q)}{\partial Q_{i}(p, q)}=0 \quad \text { and } \quad \dot{Q}_{i}(p, q)=\frac{\partial H(p, q)}{\partial P_{i}(p, q)} \\
& \left\{P_{i}, Q_{j}\right\}=\delta_{i j} \quad \text { and } \quad\left\{P_{i}, P_{j}\right\}=\left\{Q_{i}, Q_{j}\right\}=0
\end{aligned}
$$

- Poisson algebra:

Benefits from Physicists' Bias

- Conserved quantities interpretable:

$$
\begin{aligned}
& P_{c_{1}}=-4.2 p_{x_{1}}-4.2 p_{x_{2}}-1.3 p_{y_{1}}-1.3 p_{y_{2}}, P_{c_{2}}=-0.9 p_{x_{1}}-0.9 p_{x_{2}}-3.2 p_{y_{1}}-3.2 p_{y_{2}} \\
& L=-1.1 q_{x_{1}} p_{y_{1}}+0.9 q_{x_{1}} p_{y_{2}}+0.9 q_{x_{2}} p_{y_{1}}-1.0 q_{x_{2}} p_{y_{2}}+1.0 q_{y_{1}} p_{x_{1}}-0.9 q_{y_{1}} p_{x_{2}}-0.9 q_{y_{2}} p_{x_{1}}+1.0 q_{y_{2}} p_{x_{2}}
\end{aligned}
$$

- Using learned conserved quantities helps in predicting trajectories

Can we search for new mathematical/physical structures?

Symmetries \rightarrow Integrability

Integrability

A lightning overview

- Additional constraint F_{k} on motion:

$$
0=\dot{F}_{k}=\left\{H, F_{k}\right\}
$$

How many F_{k} can there be?

- System (2n dimensional) integrable iff: n independent, everywhere differentiable integrals of motion F_{k} (in involution).
- Alternatively search for Lax pair:

$$
\dot{L}=[L, M]
$$

s.t. eom are satisfied. Conserved quantities via:

$$
F_{k}=\operatorname{tr}\left(L^{k}\right)
$$

(additional condition for $\left\{F_{k}, F_{j}\right\}=0$)

Example: Harmonic Oscillator

- Hamiltonian and EOM:

$$
H=\frac{1}{2} p^{2}+\frac{\omega^{2}}{2} q^{2} ; \quad \dot{q}=p, \dot{p}=-\omega^{2} q
$$

- Lax pair:

$$
L=a\left(\begin{array}{cc}
p & b \omega q \\
\frac{\omega}{b} q & -p
\end{array}\right), \quad M=\left(\begin{array}{cc}
0 & \frac{b}{2} \omega \\
-\frac{\omega}{2 b} & 0
\end{array}\right)
$$

- Conserved quantities:

$$
\begin{aligned}
& F_{1}=2 \lambda \\
& F_{2}=2 \lambda^{2}+4 H \\
& F_{3}=2 \lambda^{3}+12 \lambda H \quad \lambda \ldots \text { spectral parameter }
\end{aligned}
$$

Integrability

We need some deus ex machina moment

Having a Lax pair formulation of integrability is very convenient, but

- inspiration is needed to find it,
- its structure is hardly transparent,
- it is not at all unique,
- the size of the matrices is not immediately related to the dimensionality of the system.

Therefore, the concept of Lax pairs does not provide a means to decide whether any given system is integrable (unless one is lucky to find a sufficiently large Lax pair).

Beisert: Lecture Notes on Integrability (p17)

Applications:

- Classical mechanics (e.g. planetary motion)
- Classical field theories ($1+1$ dimensions)
- Spin Chain Models
- $D=4 \mathrm{~N}=4 \mathrm{SYM}$ in the planar limit

Nonlinear Sciences > Exactly Solvable and Integrable Systems [Submitted on 12 Mar 2021]
Integrability ex machina

[^0]
Formulating the search as optimisation

- Aim: Method to find new Lax pairs with unsupervised learning (i.e. not requiring prior knowledge of a Lax pair)
- Lax equation as loss:

$$
\dot{L}=[L, M] \rightarrow \mathscr{L}_{\mathrm{Lax}}=|\dot{L}-[L, M]|^{2}
$$

- Equivalence to EOM (e.g. $\dot{x}_{i}=f_{i}\left(x_{i}, \partial x_{i}, \ldots\right)$): L has to include x_{i} in some component (LHS of EOM), $[L, M]$ has to include RHS of EOM

$$
\begin{aligned}
\mathscr{L}_{\mathrm{L}} & =\sum_{i, j} \min _{k}\left(\left\|c_{i j k} \dot{L}-\dot{x}_{k}\right\|\left\|^{2},| | \dot{L}_{i j}\right\|^{2}\right)+\sum_{k} \min _{i j}\left(\left\|c_{i j k} \dot{L}_{i j}-\dot{x}_{k} \mid\right\|^{2}\right), \quad c_{i j k}=\frac{\sum_{\text {batch }} \dot{L}_{i j}}{\sum_{\text {batch }} \dot{x}_{k}} \\
\mathscr{L}_{\mathrm{LM}} & =\sum_{i, j} \min _{k}\left(\left\|\tilde{c}_{i j k}[L, M]_{i j}-f_{k}\right\|\left\|^{2},\right\|[L, M]_{i j} \|^{2}\right)+\sum_{k} \min _{i j}\left(\left\|\tilde{c}_{i j k}[L, M]_{i j}-f_{k} \mid\right\|^{2}\right), \tilde{c}_{i j k}=\frac{\sum_{b a t c h}[L, M]_{i j}}{\sum_{b a t c h} f_{k}}
\end{aligned}
$$

- Avoiding mode collapse:

$$
\mathscr{L}_{\mathrm{MC}}=\max \left(1-\sum\left|A_{i j}\right|, 0\right)
$$

- Total loss:

$$
\mathscr{L}_{\mathrm{Lax}-\mathrm{pair}}=\alpha_{1} \mathscr{L}_{\mathrm{Lax}}+\alpha_{2} \mathscr{L}_{\mathrm{L}}+\alpha_{3} \mathscr{L}_{\mathrm{LM}}+\alpha_{4} \mathscr{L}_{\mathrm{MC}}
$$

Applications

Harmonic Oscillator

- Harmonic Oscillator:

$$
H=\frac{1}{2} p^{2}+\frac{\omega^{2}}{2} q^{2} ; \quad \dot{q}=p, \quad \dot{p}=-\omega^{2} q
$$

- Lax Pair:

$$
L=\left(\begin{array}{cc}
0.437 q & -0.073 p \\
-0.666 p & -0.437 q
\end{array}\right), \quad M=\left(\begin{array}{cc}
0.001 & 0.329 \\
-3.043 & -0.001
\end{array}\right)
$$

- Consistency check:

$$
\frac{d L}{d t}=\left(\begin{array}{cc}
0.437 \dot{q} & -0.073 \dot{p} \\
-0.666 \dot{p} & -0.437 \dot{q}
\end{array}\right)=\left(\begin{array}{cc}
0.441 p & 0.288 q \\
2.660 q & -0.441 p
\end{array}\right)=[L, M]
$$

- Conserved quantities:

$$
L^{2}=\left(\begin{array}{cc}
0.048618 p^{2}+0.190969 q^{2} & 0 \\
0 & 0.048618 p^{2}+0.190969 q^{2}
\end{array}\right) \Rightarrow \operatorname{tr} L^{2} \approx 0.2 H
$$

Applications

Further systems

- Korteweg-de Vries (waves in shallow water):

$$
\dot{\phi}(x, t)+\phi^{\prime \prime \prime}(x, t)+6 \phi(x, t) \phi^{\prime}(x, t)=0
$$

- Heisenberg magnet:

$$
\begin{gathered}
H=\frac{1}{2} \int d x \vec{S}^{2}(x), \vec{S} \in S^{2} ; \text { constraint: } \\
\left\{S_{a}(x), S_{b}(y)\right\}=\epsilon_{a b c} S_{c}(x) \delta(x-y)
\end{gathered}
$$

- $\mathrm{O}(\mathrm{N})$ non-linear sigma models (Sine-Gordon equation and principal chiral model):

$$
\mathscr{L}=-\operatorname{Tr}\left(J_{\mu} J^{\mu}\right), \quad J_{\mu}=\left(\partial_{\mu} g\right) g^{-1}, \quad \mu=0,1 .
$$

Perturbations on integrable systems

- Harmonic Oscillator:

$$
H_{0}=\frac{p_{x}^{2}+p_{y}^{2}}{2 m}+\omega^{2}\left(q_{x}^{2}+q_{y}^{2}\right)
$$

- Are the following perturbations integrable:

$$
H_{1}=\epsilon q_{x}^{2} q_{y}^{2}, \quad H_{2}=\epsilon q_{x} q_{y}
$$

- Initialise network at known solution for unperturbed system and see how it reacts to samples from perturbed
 system

Beyond symmetries, are there other structures in theoretical (particle) physics?

Dualities

Can they be useful in ML?
 Can ML provide new perspectives on dualities?

Dualities

2D Ising - Self-duality

Ordered rep. \leftrightarrow Disordered rep.

Field Theories

Electromagnetic Duality:

$$
\overrightarrow{\mathbf{E}} \leftrightarrow \overrightarrow{\mathbf{B}}
$$

el. charges \leftrightarrow mag. monopoles

Seiberg Dualities in supersymmetric gauge theories:

Holography

String Dualities
T-duality: winding \& momentum strings

Essence of Dualities

Essence of Dualities

Essence of Dualities

Connecting Dualities and Machine Learning

Does a neural network use such transformations automatically?

Connecting Dualities and Machine Learning

Does a neural network use such transformations automatically?

If not, how can we make use of such transformations?

1) Latent loss to maximize distance between signal \& noise:

$\mathscr{L}=\max \left(0, \alpha-\xi_{1}^{2}-\xi_{2}^{2}\right)$,
ξ_{i}^{2} largest square values of outputs

Connecting Dualities and Machine Learning

Does a neural network use such transformations automatically?

If not, how can we make use of such transformations?
2) Pre-training with medium hard inference task on latent dimension

Autoencoder

1D Ising Model with multiple spin-interactions: Feasible task: Energy
Hard inference task: Metastable state

Actual Dual variables

Intermediate variables

Conclusions and Outlook

Learning and using physics bias with ML

- Bias networks with physics knowledge for efficient results:
- Finding the functional bias possible: Learning mathematical structures (e.g. metric, Hamiltonian, symmetries) is possible in an unsupervised way when "appropriate" loss functions can be identified: - Symmetries from embedding layer without prior knowledge
- Symmetries from phase space samples
- Machinery for discovery of novel structures in integrability: Currently Lax pairs and connections for classical systems. Identify (some) integrable perturbations.
- Interpretation/enforcing of latent variables as variables of a dual theory (via appropriate losses)

Thank you!

2012.04656: Numerical CY-Metrics
2104.14444: Simulations with Symmetry Control Neural Networks
2103.07475: Integrability
2003.13679: Symmetries from Embedding Layer

For talks at the interface of physics and ML: physicsmeetsml.org

Control via Symmetries

- Losses to ensure appropriate functional forms:

$$
\begin{aligned}
& \mathscr{L}_{\mathrm{HNN}}=\sum_{i=1}^{N \cdot d}\left\|\frac{\partial \mathscr{H}_{\phi}(\mathbf{P}, \mathbf{Q})}{\partial p_{i}}-\frac{d q_{i}}{d t}\right\|_{2}+\left\|\frac{\partial \mathscr{H}_{\phi}(\mathbf{P}, \mathbf{Q})}{\partial q_{i}}+\frac{d p_{i}}{d t}\right\|_{2} \\
& \mathscr{L}_{\text {Poisson }}=\sum_{i, j=1}^{N \cdot d}\left\|\left\{Q_{i}, P_{j}\right\}-\delta_{i j}\right\|_{2}+\sum_{i, j>i}^{N \cdot d}\left\|\left\{P_{i}, P_{j}\right\}\right\|_{2}+\left\|\left\{Q_{i}, Q_{j}\right\}\right\|_{2} \\
& \mathscr{L}_{\mathrm{HQP}}^{(n)}=\sum_{i=1}^{n}\left\|\frac{d P_{i}}{d t}\right\|_{2}+\left\|\frac{d Q_{i}}{d t}-\frac{\partial \mathscr{H}_{\phi}(\mathbf{P}, \mathbf{Q})}{\partial P_{i}}\right\|_{2}+\beta \sum_{i=n+1}^{N \cdot d}\left\|\frac{d P_{i}}{d t}+\frac{\partial \mathscr{H}_{\phi}(\mathbf{P}, \mathbf{Q})}{\partial Q_{i}}\right\|_{2}+\left\|\frac{d Q_{i}}{d t}-\frac{\partial \mathscr{H}_{\phi}(\mathbf{P}, \mathbf{Q})}{\partial P_{i}}\right\|_{2}
\end{aligned}
$$

[^0]: Sven Krippendorf, Dieter Lust, Marc Syvaeri

