

Physics-Guided AI for Learning Spatiotemporal Dynamics

Rose Yu

Assistant Professor University of California, San Diego

Predicting Global Climate

100,000 stations, 180 countries

credit: NASA

Forecasting Daily Traffic

35,000 detectors, every 30 seconds

credit: Waze

Learning Spatiotemporal Dynamics

Physics-Guided Al

Encode Inductive Bias

Improve Generalization

Reduce Sample Complexity

Increase Trust in Al

Trainable Operator

- Given input time series (x_1, \dots, x_t)
- Goal: Learn a mathematical operator parameterized by deep neural nets

$$f: x_t \longrightarrow y_t$$

$$L\{f\}(x) = \int_0^\infty e^{-xt} \frac{f(t)dt}{\int_0^{\text{Trainable Weights}}}$$

Accelerating Turbulence Simulation

Rayleigh-Bénard convection¹

Rui Wang UCSD

Karthik Kashinath Lawrence Berkeley

Mustafa Mustafa Lawrence Berkeley

Adrian Albert Lawrence Berkeley

Towards Physics Informed Deep Learning for Spatiotemporal Modeling of Turbulence Flows Rui Wang Adrian Albert, Karthik Kashinath, Mustafa Mustafa, <u>Rose Yu</u> In ACM SIGKDD Conference on Knowledge Discovery and Data (KDD), 2020

Related Work

- **Turbulence Modeling** [Ling et al. 2016, Raissi et al. 2017, Fang et al. 2018, Kim and Lee 2019, Chertkov et al. 2019, Wu et al. 2019]
 - no external force, spatial modeling
 - require boundary condition inputs
- Fluid Animation [Tompson et al. 2017, Chu and Thuerey, 2017, Xie et al. 2018, Thuerey et al. 2019]
 - emphasize simulation realism
 - lack physical interpretation
- Video Prediction [Wang et al. 2015, Finn et al. 2016, Xue et al. 2016, Denton et al. 2018]
 - complex noisy data
 - unknown physical processes

Hybrid Learning Framework

- Navier-Stokes equations: describe the motion of viscous fluids
- Reynolds Averaging (RANS)

$$\mathbf{w}(\mathbf{x},t) = \bar{\mathbf{w}}(\mathbf{x},t) + \mathbf{w}'(\mathbf{x},t)$$
$$\bar{\mathbf{w}}(\mathbf{x},t) = \frac{1}{T} \int_{t-T}^{t} G(s) \mathbf{w}(\mathbf{x},s) ds$$

• Large Eddy Simulation (LES) $\mathbf{w}(\mathbf{x}, t) = \tilde{\mathbf{w}}(\mathbf{x}, t) + \mathbf{w}'(\mathbf{x}, t)$ $\tilde{\mathbf{w}}(\mathbf{x}, t) = \int G(\mathbf{x} \mid \xi) \mathbf{w}(\xi, t) d\xi$

Turbulent-Flow Net

RANS-LES Coupling

Data Description

- RBC simulation with Prandtl number 0.71 and Reynolds number 2.5 x e8
- ~10k sequences, spatial resolution 64x64, time length 90
- 60 time step ahead prediction, results averaged over three runs

Prediction Performance

- TF-Net consistently outperforms baselines on forward prediction RMSE
- 2X faster than Lattice Boltzmann method (LBM)

Physical Consistency

- TF-net predictions are closest to the target w.r.t. kinetic energy
- Video forward predictions methods (e.g. Unet, ConvLSTM) cannot capture physical properties

Prediction Visualization

Ablation Study

T+1

Residual Learning

- Given input time series (x_1, \dots, x_t)
- ullet Goal: Learn a dynamics model f

Combating Ground Effect

Kamyar Azizzadenesheli

Guanya Shi Kamyar Azizzad Caltech Caltech

Soon-Jo Chung Caltech

Anima Anandkumar Caltech/NVIDIA

Yisong Yue Caltech

Neural Lander: Stable Drone Landing Control using Learned Dynamics

Guanya Shi, Xichen Shi, Michael O'Connell, <u>Rose Yu</u>, Kamyar Azizzadenesheli, Animashree Anandkumar, Yisong Yue, and Soon-Jo Chung International Conference on Robotics and Automation (ICRA), 2019

Hybrid Learning Framework

Position: p Velocity: $\mathcal V$ Angular Velocity: $\mathcal O$ Total Thrust, Torque: $\mathbf f_u, \tau_u$ Unknown Disturbance Force, Torque: $\mathbf f_a, \tau_a$

Learning Stable Dynamics

• Spectral Normalization: constrain the Lipschitz constant

$$f(\mathbf{x}) = g^L \circ g^{L-1} \cdots g^1(\mathbf{x}) \xrightarrow{f(z)} \xrightarrow{L \ge \tan \alpha} g^L(x) = \phi(W^L x) \xrightarrow{f(x)} g^L(x) = \phi(W^L x)$$

Approximate the Lipschitz constant $\|f\|_{Lip} \leq \|g^L\|_{Lip} \cdot \|\phi\|_{Lip} \cdots \|g^1\|_{Lip}(\mathbf{x}) = \prod_{l=1}^L \sigma(W^l)$ Normalize the weights of a DNN by their singular values $\overline{W} = W/\sigma(W)$

Combat Ground Effect

Neural Lander

Stable Drone Landing Control using Learned Dynamics

Guanya Shi, Xichen Shi, Michael O'Connell, Rose Yu, Kamyar Azizzadenesheli, Animashree Anandkumar, Yisong Yue, and Soon-Jo Chung

 Spectrally normalized DNNs generalize well [Bartlett et al. 17], which is an indication of stability in machine learning

Equivariant Learning

• Noether's theorem: For every symmetry, there is a corresponding conservation law.

• Learn a function f that is G-equivariant w.r.t group ${\cal G}$

 $f(\rho(g)x) = \rho'(g)f(x)$

Sample Efficient Trajectory Prediction

Jinxi (Leo) Li

Robin Walters

Trajectory Prediction using Equivariant Continuous Convolution Walters, Robin, Jinxi Li, and <u>Rose Yu</u>. International Conference on Learning Representations (ICLR), 2021.

Symmetry

- **Group**: a set *G* and a composition map $\circ : G \times G \to G$
 - $1 \in G$ and $\forall g \in G, \exists g^{-1} \in G$
 - SO(2): 2d rotation

$$\bigcirc \rightarrow \bigcirc$$

- Invariance, Equivariance: function $f \, {\rm and} \, {\rm group} \, G$

• G-invariant:
$$f(g(x)) = f(x)$$

• G-equivariant: f(gx) = gf(x)

$$f(x, v) = (x, 2v)$$
$$\rho(Rot(\theta)) = \begin{pmatrix} \cos(\theta) & \sin(-\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

Equivariant Networks

• Use a neural network to learn f that is G-equivariant

Proposition: Let the layer $V^{(i)}$ be a G-representation for $0 \le i \le n$. Let $f^{(ij)} : V^{(i)} \to V^{(j)}$ be G-equivariant for i < j. Define recursively $x^{(j)} = \sum_{0 \le i \le j} f^{(ij)}(x^{(i)})$, then $x^{(n)} = f(x^{(0)})$ is G-equivariant.

- If the maps between layers are equivariant, then the entire network is equivariant.
- Adding skip connections does not affect its equivariance with respect to linear actions.

Weight Symmetry

Theorem (Weiler & Cesa 2019): a convolutional layer is G-equivariant if and only if the kernel satisfies $K(gv) = \rho_{out}^{-1}(g)K(v)\rho_{in}(g)$ for all $g \in G$, with action maps ρ_{in} and ρ_{out} .

Rotation Symmetry

- Traffic dynamics resembles driven many-particle systems [Helbing 2000]
- Implicit rotation symmetry in vehicles
- Expect consistent predictions with different orientations

Equivariant Continuos Convolution (ECCO)

 $K(\theta + \phi, r) = \rho_{\text{out}}(\operatorname{Rot}_{\theta})K(\phi, r)\rho_{\text{in}}(\operatorname{Rot}_{\theta}^{-1}).$

ECCO

Performance Comparison

Model	Argoverse				TrajNet++		#Param
	ADE	DE@1s	DE@2s	DE@3s	ADE	FDE	
Constant Velocity	3.86	2.43	5.10	7.91	1.39	2.86	-
Nearest Neighbor	3.49	2.02	4.98	7.84	1.38	2.79	-
LSTM	2.13	1.16	2.81	4.83	1.11	2.03	50.6K
CtsConv	1.85	0.99	2.42	4.32	0.86	1.79	1078.1K
ρ_1 -ECCO	1.70	0.93	2.22	3.89	0.88	1.83	51.4K
$\rho_{\rm reg}$ -ECCO	1.62	0.89	2.12	3.68	0.84	1.76	129.8K
VectorNet	1.66	0.92	2.06	3.67	-	-	72K + Decoder
10).					CtsConv	

Conclusion

- Incorporating Physical Principles in Deep Dynamics Models
 - Trainable Operator: replacing mathematical operators with trainable weights
 - Residual Learning: learning the correction terms of the physicsbased models
 - Equivariant Learning: incorporating symmetry to guarantee laws of conservation
- Future Work
 - Stochastic dynamics and multi-agent interactions

"Time and space are not conditions of existence, time and space is a model of thinking."

-Albert Einstein

Acknowledgment

Open Source Code and Data: roseyu.com

