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Profit 

per  

Click

data / time

Algo 1

Algo 2
significant  

difference! 

When to use RL?
Online  

Decisions! 

(i.e., can’t wait to collect data first)
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When to use RL?

can only explore  

small part  

of the space

Can we “intelligently” 

explore the space to create 

new insights?

Knowledge Synthesis!



But how to use them for the desired purpose? 

Example of Knowledge Synthesis: Urban Planning

We have simulators



Traffic Jam Problem



Simulated	Illustration



Wu et al. 2018



Learning	Dexterity

Known	Simulator,	24	degrees	of	freedom!	



When to use RL?

Goal

Start

Start

Existing Data / Solution



When to use RL?

Goal

Start

Start

Existing Data / Solution



When to use RL?

Improve the solution!

Goal

Start

Start

RL can be thought of as finding the “shortest path”



When to use RL?

online decisions

Improve existing solutions

Knowledge  

Synthesis Control non-linear  

systems



Current Observation Goal

Actions?

Actions?



Actions?

Policy

initially random

One Approach: Reinforcement Learning



Actions?

Policy

initially random

How likely?

One Approach: Reinforcement Learning



Actions?

Policy

initially random

How likely?

ATARI Games

21 million games!~10-50 million interactions!

Simulation: Ginormous number of interactions!

One Approach: Reinforcement Learning



Actions?

Policy

Game score is the reward!

One Approach: Reinforcement Learning



Actions?

Policy

One Approach: Reinforcement Learning



Actions?

Policy

Visual Classifier

One Approach: Reinforcement Learning



Actions?

Policy

Visual Classifier

One Approach: Reinforcement Learning



Policy

Visual Classifier

repeat

for every goal!

One Approach: Reinforcement Learning



actions?

Issues with Reinforcement Learning

Lots of data
Where do rewards 

come from?
Task Specific



Learning to walk using RL

Reward to move right



Learning to stack using RL

Reward for the bottom of the block 

to be raised





modify reward



modify reward

grad 
student
reward 
descent



Eventually works .. but not the desired way



Meta-World, Yu et al., 2019 



Meta-World, Yu et al., 2019 



modify reward

grad 
student
reward 
descent

Fitting reward 
functions to 
algorithms!



Leveraging Demonstrations for Deep Reinforcement Learning on Robotics Problems with Sparse Rewards, 2018

Overcoming	Reward	SpeciAication:	Provide	Demonstrations



Issues with Reinforcement Learning

Lots of data
Where do rewards 

come from?
Task Specific

Demonstrations

(tedious to collect)



Consider Block Stacking

State Space: Position/Orientation of Blocks

Action Space: Position of end effector + open/close gripper



Pure RL on this Task



The case of “sparse” reward

Current 

Location

Goal 

Location

Reward  

+1

Sparse Rewards: Typically easy to define



a1

The Sparse Reward Problem



a2

“0” Reward

The Sparse Reward Problem



“0” Reward

The Sparse Reward Problem



“0” Reward

Exploration Problem

The Sparse Reward Problem



Using Demonstrations to Overcome Exploration

Overcoming Exploration in Reinforcement Learning with Demonstrations, Nair et al., 2018



Start with goal close to  

initial state

Using Task Curriculum



Slowly move the goal  

farther

Using Task Curriculum



Using Task Curriculum

Slowly move the goal  

farther



Using Task Curriculum

Slowly move the goal  

farther



Creating a Task Curriculum

Towards PracFcal Robot ManipulaFon Using RelaFonal Reinforcement Learning, ICRA 2020 

. . .



Using Curriculum Stacks Only 1 Block



Why did the curriculum fail? 

. . .

s : (x1, y1) s : (x1, y1, x2, y2) s : (x1, y1, . . . , xN, yN)

π(s; θ)

a



Why did the curriculum fail? 

. . .

s : (x1, y1) s : (x1, y1, x2, y2) s : (x1, y1, . . . , xN, yN)

π(s; θ)

a

May not generalize to  

the new state space! 



Graph Neural Network for Generalizable State Representation

Figure taken from Zambaldi et al., 2018

reduce
(max pool, avg pool, etc)



Our Method

Towards PracFcal Robot ManipulaFon Using RelaFonal Reinforcement Learning, ICRA 2020 



Both Graph Network (ReNN) + Curriculum are Important



Prior Work

Towards PracFcal Robot ManipulaFon Using RelaFonal Reinforcement Learning, ICRA 2020 

Nair et al.: Human Demonstrations 

Ours: NO Demonstrations



Towards PracFcal Robot ManipulaFon Using RelaFonal Reinforcement Learning, ICRA 2020 

Zero Shot Generalization



Towards PracFcal Robot ManipulaFon Using RelaFonal Reinforcement Learning, ICRA 2020 

Emergent Behaviors



Issues with Reinforcement Learning

Lots of data
Where do rewards 

come from?
Task Specific

Task Curriculum

(less human effort than demonstrations)

Take away
State representations must have inductive biases to generalize to more 

complex tasks 



Issues with Reinforcement Learning

Lots of data
Where do rewards 

come from?
Task Specific

Task Curriculum

Demonstrations

Lets not wait to find rewards

Learn skills in anticipation of future tasks!



Robots 

Exploring



at

Experiment

xt+1

xt



(ot, at, ot+1) 

Experiment

at

xt+1

xt

Model



Useful Model: Predict what will happen next



Useful Model: Predict what will happen next



Forward model in pixel space

Useful Model: Predict what will happen next

Vondrick et al., 2016

Finn et al., 2017

Xue et al., 2016

Goodfellow et al., 2014

Ranzato et al., 2014

Petrovic et al., 2006 Oh et al., 2015

Mathieu et al., 2015

Vondrick et al., 2015



Not only hard,  

but is this the right model to build ???



Consider a glass bottle



What will happen on dropping the bottle?



Easy to predict: bottle breaks  

but  

Hard to predict: exact location of glass pieces

Different Feature Abstractions afford Different Predictions 



Instead of predicting pixels,



Action 

Predictor

How about a different task?

Inverse Model
helps learn useful features/policy!



Inverse Model

Forward Model

, =

=+

features
regularizer



Robots 

Exploring



More	Generaliza,on	

Learning to Poke by Poking: Experiential Learning of Intuitive Physics, Agrawal et al., NIPS 2016

Pushing Objects



Rope Manipulation

robot gets only RGB images as input!
Combining Self-Supervision and ImitaFon for Vision Based Rope ManipulaFon, Ashvin Nair*, Dian Chen*, Pulkit Agrawal*,  

Phillip Isola, Pieter Abbeel , Jitendra Malik, Sergey Levine, ICRA 2017 (*equal contribuFon) 



Robot’s	Emergent	Behavior

Goal ImageCurrent Image

Zero Shot Visual ImitaFon, Pathak D.*, Mahmoudieh P*., Luo M.*, Agrawal P. *,  

Shentu Y., Chen D., Shelhamer E.,  Malik J., Darrell, T. (ICLR 2018, *equal contribuFon) 



Model of how things work  
(intuitive physics, behavior) 

What experiment to run?  
(exploration policy)



Issues with Reinforcement Learning

Lots of data
Where do rewards 

come from?
Task Specific

Task Curriculum

Demonstrations

Self-Supervised Model Learning



What experiment to run?  
(exploration policy)

Model of how things work  
(intuitive physics, behavior) 



Environment

Random Exploration is Limiting



Random Exploration is Limiting

Environment



Random Exploration is Limiting

Environment



 

Random Exploration is Limiting

Environment



 

Environment

Random Exploration is Limiting



 
 

Random Exploration is Limiting

Environment



 

Novelty Seeking Exploration

Environment



 

Novelty Seeking Exploration

Environment



 

Novelty Seeking Exploration

Environment



 

Novelty Seeking Exploration

Environment



“Down”	has	no	effect

ObservationAction

Curiosity driven ExploraFon by Self-Supervised PredicFon 

Pathak D., Agrawal P., Efros A., Darrell T. , ICML 2017  



?

Prediction

Reality

Curiosity driven ExploraFon by Self-Supervised PredicFon 

Pathak D., Agrawal P., Efros A., Darrell T. , ICML 2017  



Prediction

Reality

Curiosity driven ExploraFon by Self-Supervised PredicFon 

Pathak D., Agrawal P., Efros A., Darrell T. , ICML 2017  



Prediction

Reality

Curiosity	≜	Prediction	Error

Curiosity driven ExploraFon by Self-Supervised PredicFon 

Pathak D., Agrawal P., Efros A., Darrell T. , ICML 2017  



current state    
st

current state 
st

Forward 
Model

next state st+1

action at

Curiosity Reward

action at

next state st+1

policy network

Reinforcement Learning



current state 
(st)

next state 
(st+1)

action  
(at )

Error in  

pixel-space is  

undesirable

Forward 
Model

Prediction Error Reward

Error as reward



Only be curious about

things that can   

affect the agent



current state 

(st)

next state 

(st+1)

action  

(at )

Prediction Error in Feature Space

Image Encoder



Image Encoder

Action 

Predictor

Inverse Model  

for learning feature representation

current state 

(st)

next state 

(st+1)

action  

(at )

Prediction Error in Feature Space



Forward 

Model

Image Encoder

Action 

Predictor

current state 

(st)

next state 

(st+1)

action  

(at )

Prediction Error in Feature Space



Curiosity Reward

Image Encoder

Action 

Predictor

(see also Gregor et al. 2017)

current state 

(st)

next state 

(st+1)

action  

(at )

Forward 

Model

Prediction Error in Feature Space



current state    
st

action at

policy network

Is this a good exploration policy?



Testing	Exploration	on	the	game	of	Mario

Emergent behaviors: 

• Jumping enemies, 

pipes and pits 

• Killing enemies

Curiosity driven ExploraFon by Self-Supervised PredicFon 

Pathak D., Agrawal P., Efros A., Darrell T. , ICML 2017  



Does	the	exploration	generalize?	

Testing on Level-3Trained on Level-1

Curiosity driven ExploraFon by Self-Supervised PredicFon 

Pathak D., Agrawal P., Efros A., Darrell T. , ICML 2017  
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Agent’s	Observation

Curious	Agent	in	3D	Maze

Curiosity driven ExploraFon by Self-Supervised PredicFon, Pathak D., Agrawal P., Efros A., Darrell T. , ICML 2017  



Curious	Agent	in	3D	Maze

Curiosity driven ExploraFon by Self-Supervised PredicFon, Pathak D., Agrawal P., Efros A., Darrell T. , ICML 2017  



S

Train	Map	
Test	Map		

(different	textures)

S

Note:	Agent	does	not	have	access	to	Map

Curiosity driven ExploraFon by Self-Supervised PredicFon, Pathak D., Agrawal P., Efros A., Darrell T. , ICML 2017  

Does the exploration policy generalize?



Train	Map	

Does the exploration policy generalize?

Test	Map		

(different	textures)

No	Finetuning

Note:	Agent	does	not	have	access	to	Map

Curiosity driven ExploraFon by Self-Supervised PredicFon, Pathak D., Agrawal P., Efros A., Darrell T. , ICML 2017  



Robustness to irrelevant parts

Curiosity driven ExploraFon by Self-Supervised PredicFon, Pathak D., Agrawal P., Efros A., Darrell T. , ICML 2017  



Issues with Reinforcement Learning

Lots of data
Where do rewards 

come from?
Task Specific

Task Curriculum

Demonstrations

Self-Supervised Model Learning

Exploration



Learning Models from Natural Visual Data is Hard

Most model capacity  

is consumed by distractors

Learning Task Informed Abstractions, Fu et al (in submission)
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Learning Task Informed Abstractions, Fu et al (in submission)

!
"

max p(ot |s+
t , s−

t )

Incentivize  to predict rewardss+
t

Constrain  to NOT predict rewardss−
t



Raw Observation 

  

Dreamer  

(best prior work)

Ours 

Results Teaser 

Learning Task Informed Abstractions, Fu et al (in submission)



Issues with Reinforcement Learning

Lots of data
Where do rewards 

come from?
Task Specific

Task Curriculum

Demonstrations

Self-Supervised Model Learning

Exploration

Learning  

Task-Relevant Models



 

Exploration has benefits, but is undesirable at times!

Environment



Imagine your favorite playlist

(they want you hooked)

Explore by 

Suggesting other music



Imagine your favorite playlist

(they want you hooked)

Explore by 

Suggesting other music

Sometimes Exploration can be very costly! 



Online Data Collection 


is


NOT always practical

Offline RL



Conservative Q-Learning for Offline RL 

Kumar et al., 2020

s

a
s′ 

D : {si, ai, s′ i} i ∈ [1,N]

Existing Dataset

:Bellman Operator

Q-Learning

a ∼ μ(a |s)
Learnt Policy

a′ 

Overestimate  

Q(s, a′ )

Conservative Q-Learning



Improving Offline Learning with Action Primitives 



Improving Offline Learning with Action Primitives 

State (joint angles + xy pose): 29 dim

Action (joint torques): 8 dim

State (joint angles + xy pose): 60 dim

Action (joint torques): 9 dim

Antmaze largeAntmaze medium kitchen



z

z

z

z
πθ(a|s, z)

<latexit sha1_base64="XGKGEGHXYjG4NaqJqfbPtivAuyE=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQQUpSBV0W3bisYB/QhDCZTtuhkwczN0KM9VfcuFDErR/izr9x2mahrQcuHM65l3vv8WPBFVjWt1FYWV1b3yhulra2d3b3zP2DtooSSVmLRiKSXZ8oJnjIWsBBsG4sGQl8wTr++Hrqd+6ZVDwK7yCNmRuQYcgHnBLQkmeWnZh7mQMjBmRSJY/q9OHEMytWzZoBLxM7JxWUo+mZX04/oknAQqCCKNWzrRjcjEjgVLBJyUkUiwkdkyHraRqSgCk3mx0/wcda6eNBJHWFgGfq74mMBEqlga87AwIjtehNxf+8XgKDSzfjYZwAC+l80SARGCI8TQL3uWQURKoJoZLrWzEdEUko6LxKOgR78eVl0q7X7LNa/fa80rjK4yiiQ3SEqshGF6iBblATtRBFKXpGr+jNeDJejHfjY95aMPKZMvoD4/MHjTiUsg==</latexit>

Primitive Policy

Task Policy

πψ(z|s)
<latexit sha1_base64="GCK2+ngQZu2EKM9l8D2Kk7TdZBw=">AAAB+HicbVBNT8JAEJ3iF+IHVY9eGokJXkiLJnokevGIiYAJbZrtssCG7XazuzWByi/x4kFjvPpTvPlvXKAHBV8yyct7M5mZFwlGlXbdb6uwtr6xuVXcLu3s7u2X7YPDtkpSiUkLJyyRDxFShFFOWppqRh6EJCiOGOlEo5uZ33kkUtGE3+uxIEGMBpz2KUbaSKFd9gUNM18oOq1OntRZaFfcmjuHs0q8nFQgRzO0v/xegtOYcI0ZUqrruUIHGZKaYkamJT9VRCA8QgPSNZSjmKggmx8+dU6N0nP6iTTFtTNXf09kKFZqHEemM0Z6qJa9mfif1011/yrIKBepJhwvFvVT5ujEmaXg9KgkWLOxIQhLam518BBJhLXJqmRC8JZfXiXtes07r9XvLiqN6zyOIhzDCVTBg0towC00oQUYUniGV3izJtaL9W59LFoLVj5zBH9gff4A1q+TMw==</latexit>

Given a task 

(i.e. a reward 

function)

+1 for reaching goal

Cluster actions to learn “skills” (or action primitives)

OPAL:Offline Primitive Discovery for Accelerating RL

Ajay et al., ICLR 2021

Easier to optimize

(reduction in plan length)



Results

BC: Behavioral Cloning

BEAR: Bootstrapping error accumulation reduction (Kumar et al, 2019)

EMAQ: Expected Max-Q Learning (Ghasemipour et al, 2020)

CQL: Conservative Q Learning (Kumar et al, 2020)

Ajay et al., ICLR 2021



Issues with Reinforcement Learning

Lots of data
Where do rewards 

come from?
Task Specific

Task Curriculum

Demonstrations

Self-Supervised Model Learning

Exploration

Learning  

Task-Relevant Models

Safer learning from existing data
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x7.5

A Long Horizon Planning Framework For Manipulating Rigid Pointcloud Objects,  

A. Simeonov, Y. Du, B. Kim, F. Hogan, J. Tenenbaum, P. Agrawal, A. Rodriguez, CoRL 2020

Using Skills for Long-Term Planning from Visual Sensing 



A Long Horizon Planning Framework For Manipulating Rigid Pointcloud Objects,  

A. Simeonov, Y. Du, B. Kim, F. Hogan, J. Tenenbaum, P. Agrawal, A. Rodriguez, CoRL 2020

Using Skills for Long-Term Planning from Visual Sensing 



Consider Microrobots 



Simulating HAMR is expensive and is inaccurate

98.96x slower than 
realtime



Full Model Simple Model

Faster than real-time simulation 

(but not accurate enough for learning to control)

Learn the full model from scratch Domain Randomization



Domain Randomization for Transfer

Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World, Tobin et al., 2017

Domain Randomization



Disadvantage of  

Domain Randomization

Sim-to-Real: Learning Agile Locomotion For Quadruped Robots, Tan et al., 2018



Residual Model Learning

Don't learn more than we need to! 

simulators are reasonably good at hard contacts and 

rigid-body dynamics. 

● Use simulator to simulate a bare-minimum simplified model 

● Use learning to compensate for the model difference (residual)

Residual Model Learning for Microrobot Control, Gruenstein et al. (in submission)



Learning the Residual Model

Simulator with Simple Model Simulator with Full Model

However,

Learn

Key Idea: Learn to modify inputs to simple model, so it matches the full 

model

Residual Model Learning for Microrobot Control, Gruenstein et al. (in submission)



How well does this perform?

Only requires 12 seconds of data
47x faster 

 than simulating the full model

Residual Model Learning for Microrobot Control, Gruenstein et al. (in submission)



Residual Model can be used for learning control

Residual Model Learning for Microrobot Control, Gruenstein et al. (in submission)



Issues with Reinforcement Learning

Lots of data
Where do rewards 

come from?
Task Specific

Task Curriculum

Demonstrations

Self-Supervised Model Learning

Exploration

Learning  

Task-Relevant Models

Safer learning from existing data
Efficient Learning 

In complex systems



Use Deep Neural Networks as the Workhose



Huh et al. (in submission)

Deeper Nets More Parameters Complex Functions

The Low Rank Simplicity Bias in Deep Neural Networks

Simple Functions

(low rank)



Huh et al. (in submission)

The Low Rank Simplicity Bias in Deep Neural Networks



Questions?


