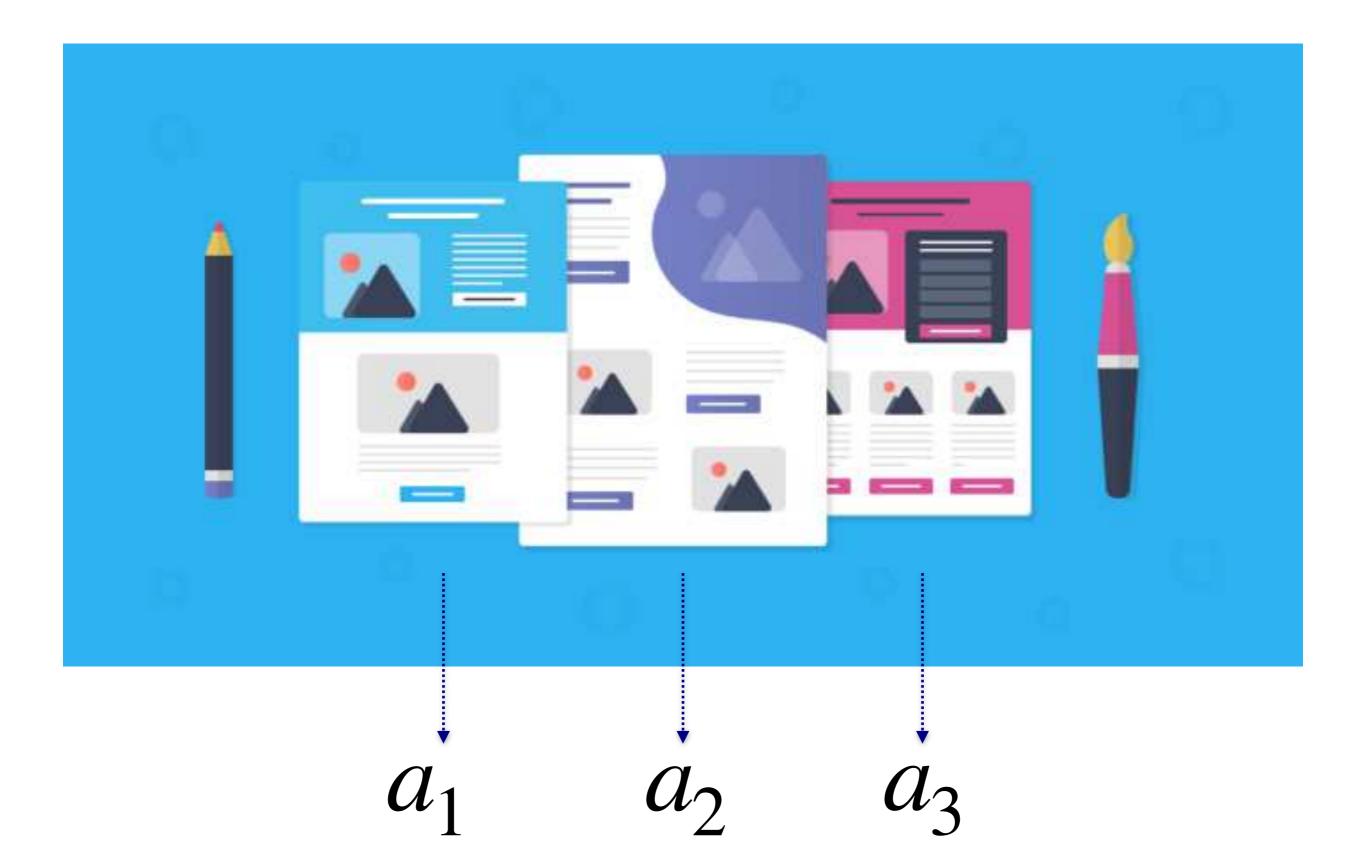
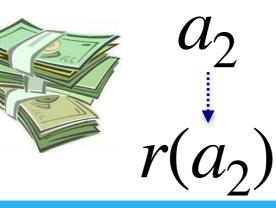
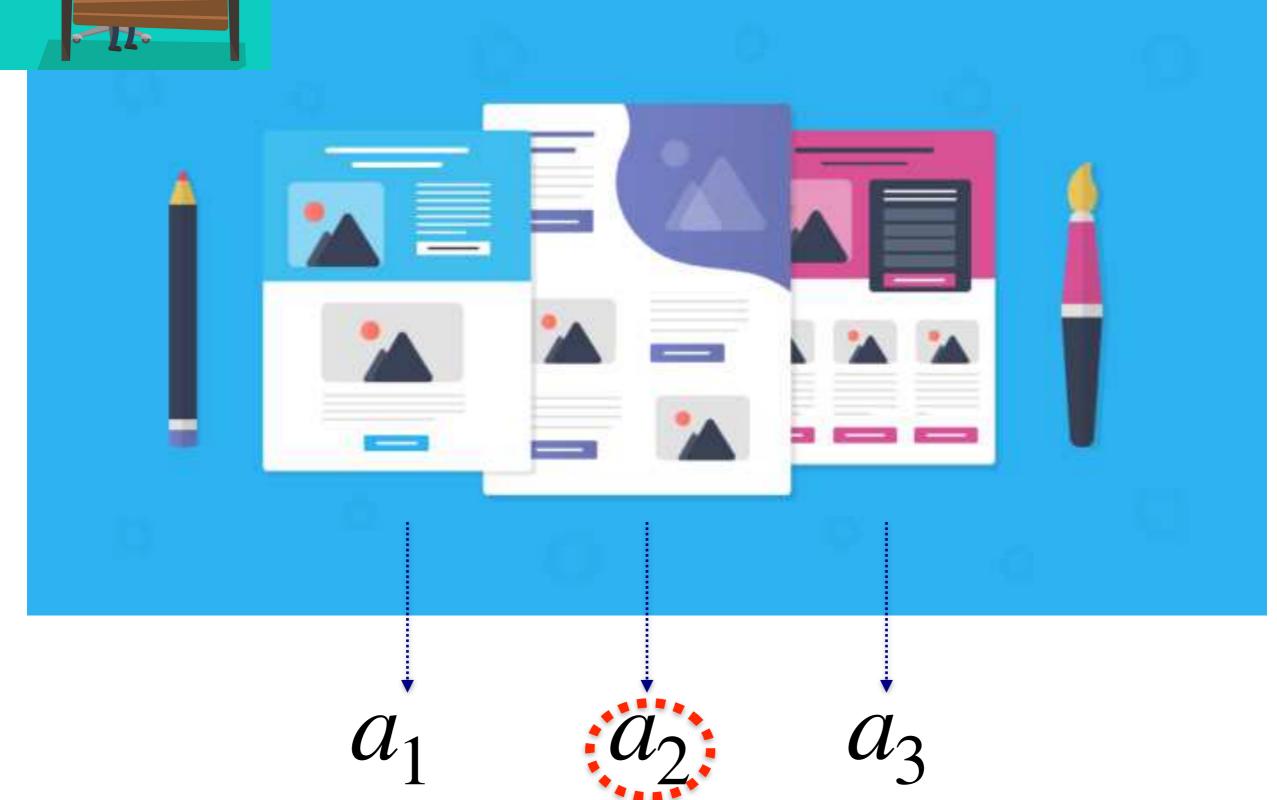
Challenges in Real World RL

Improbable AI Lab

Pulkit Agrawal



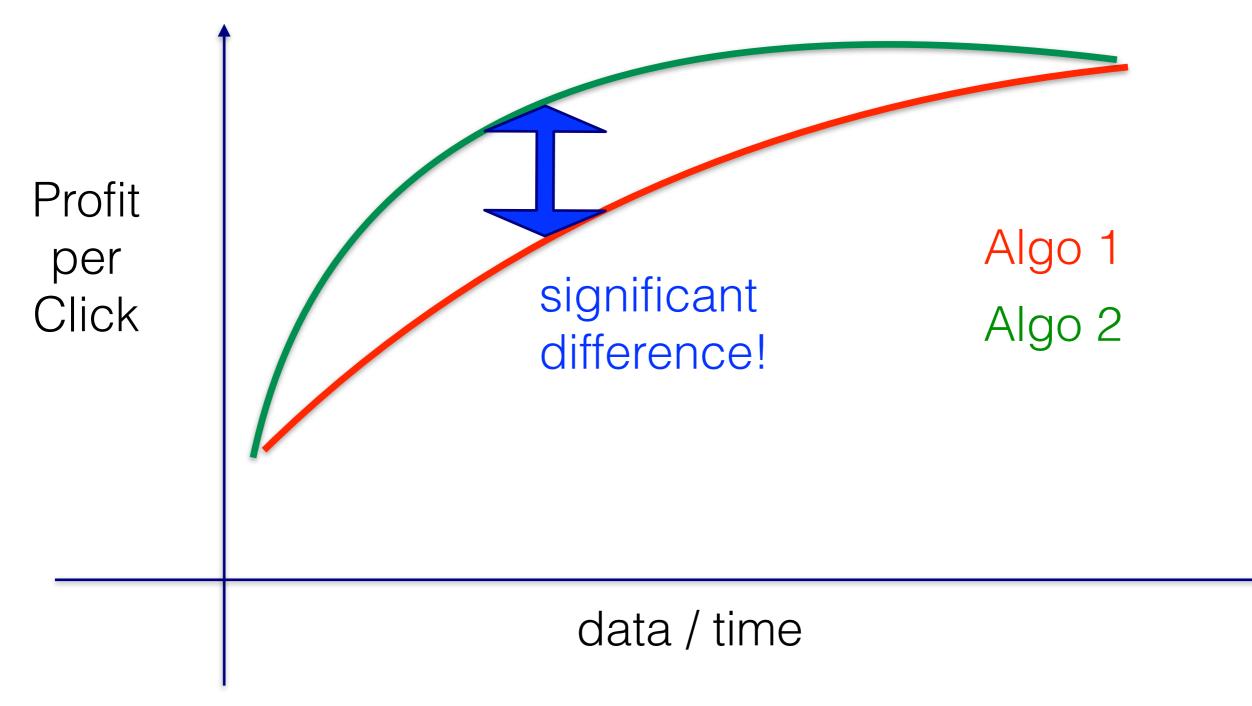


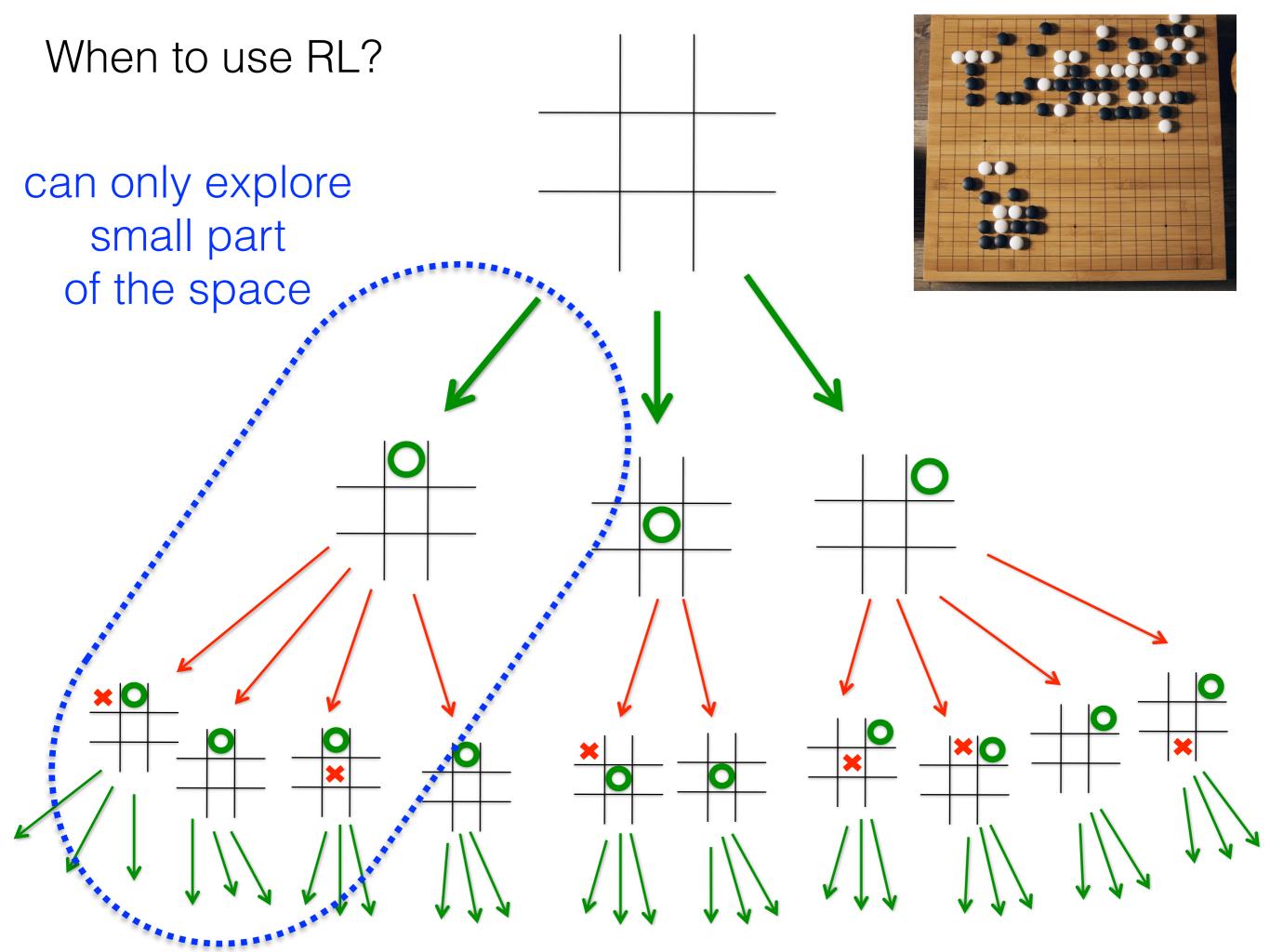


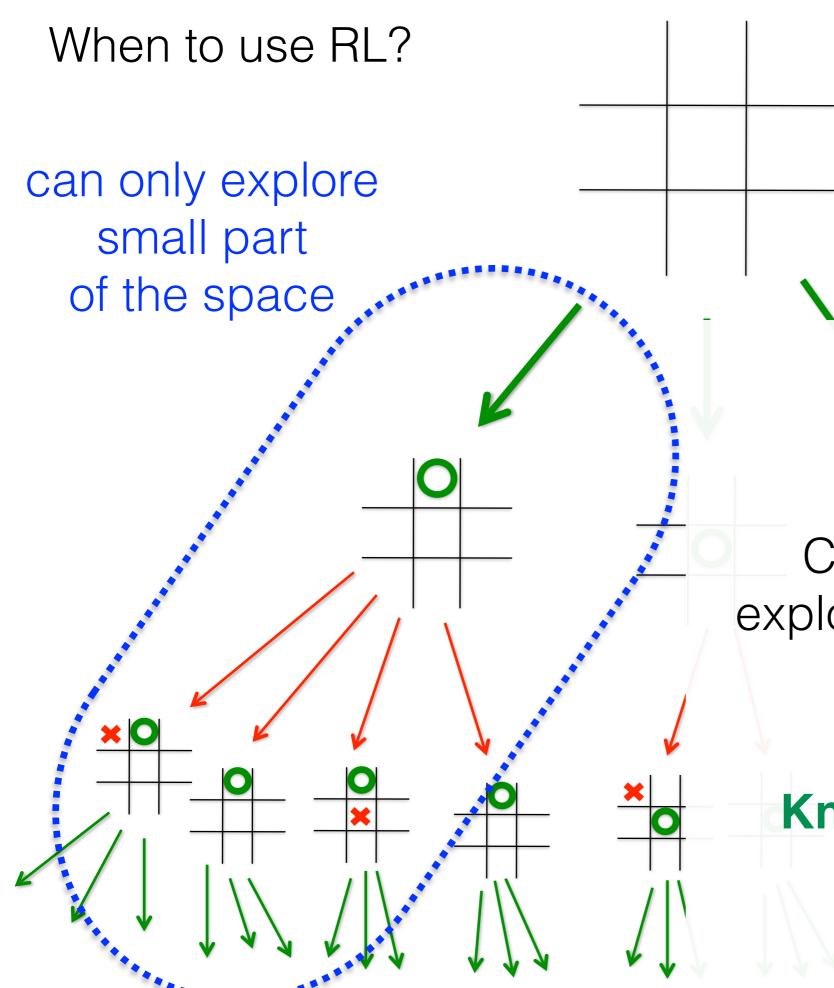
 $\begin{array}{ccc} a_2 & a_3 \\ a_2 & a_3 \\ r(a_2) & r(a_3) \end{array}$

Online Decisions!

(i.e., can't wait to collect data first)









Can we "intelligently" explore the space to create new insights?

Knowledge Synthesis!

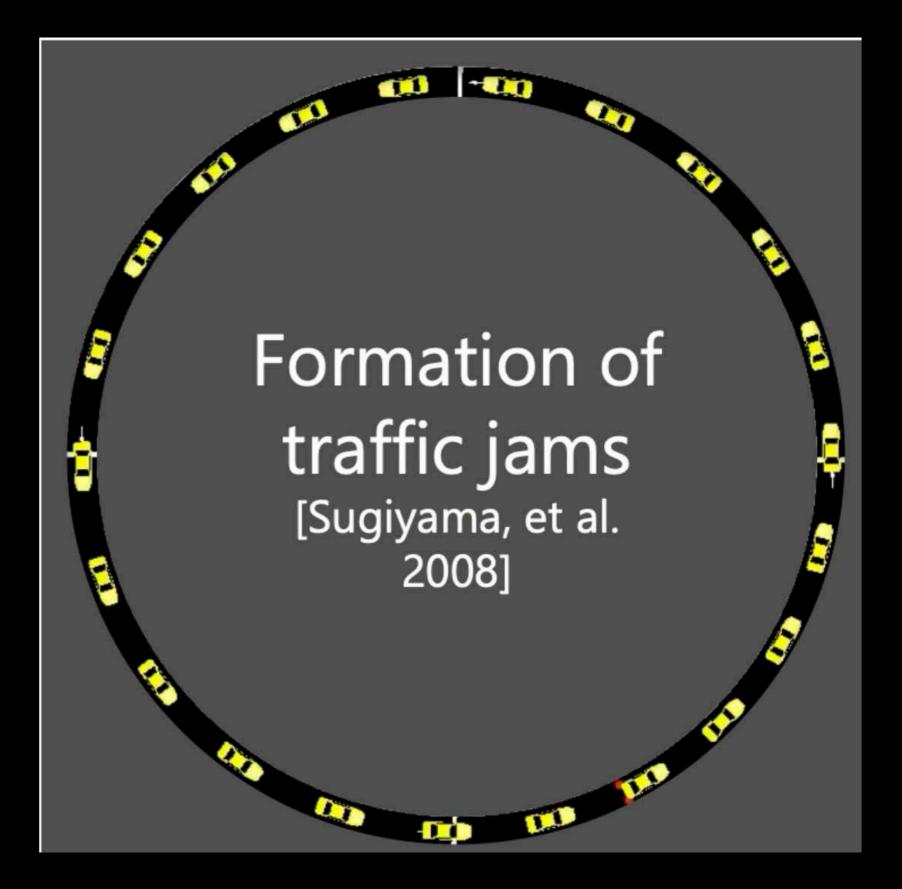
Example of Knowledge Synthesis: Urban Planning

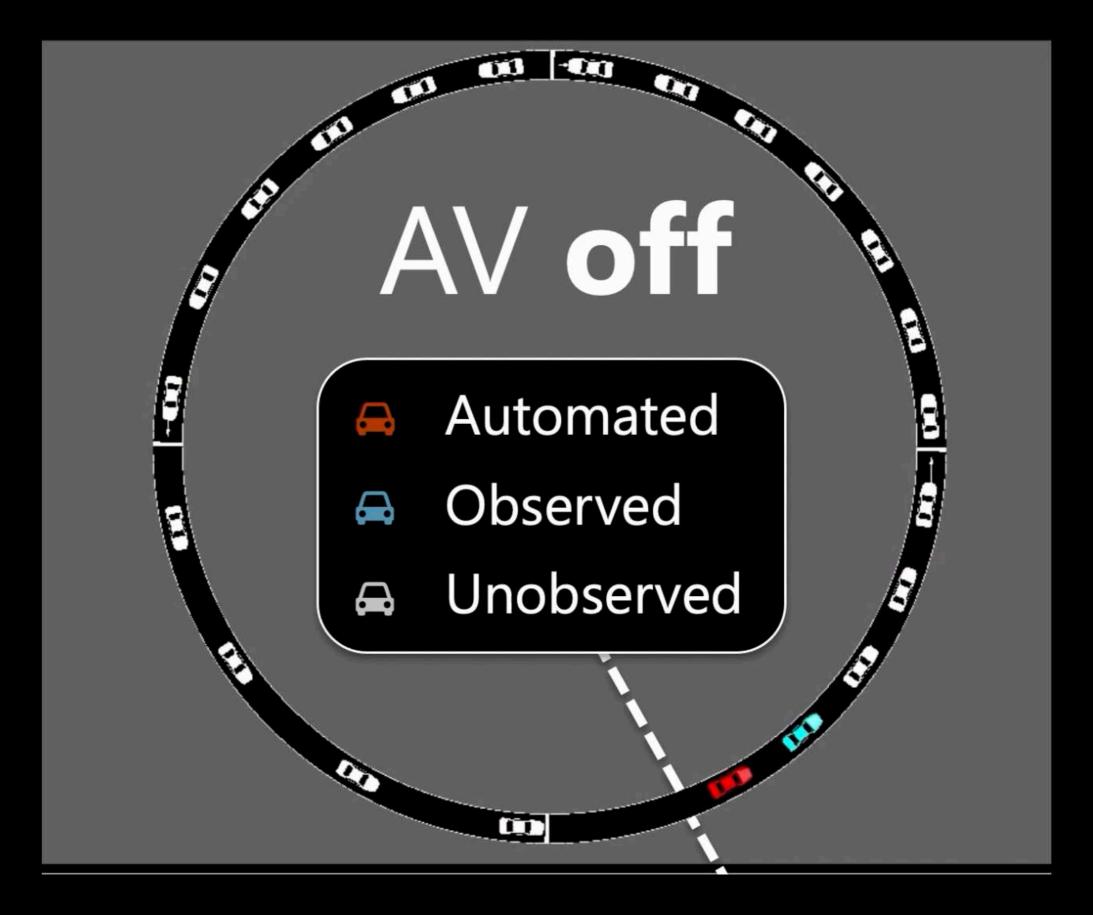
We have simulators

But how to use them for the desired purpose?

Traffic Jam Problem

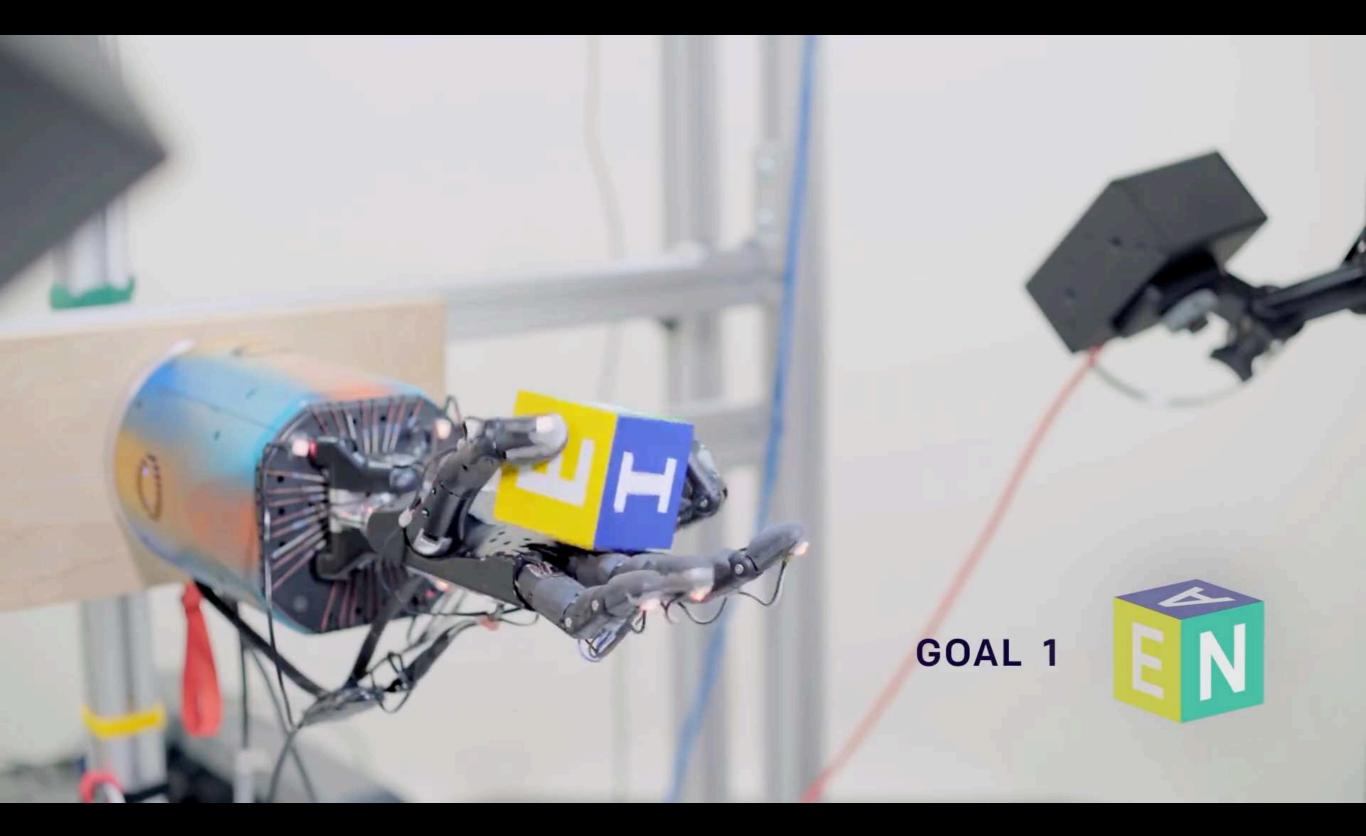
Simulated Illustration



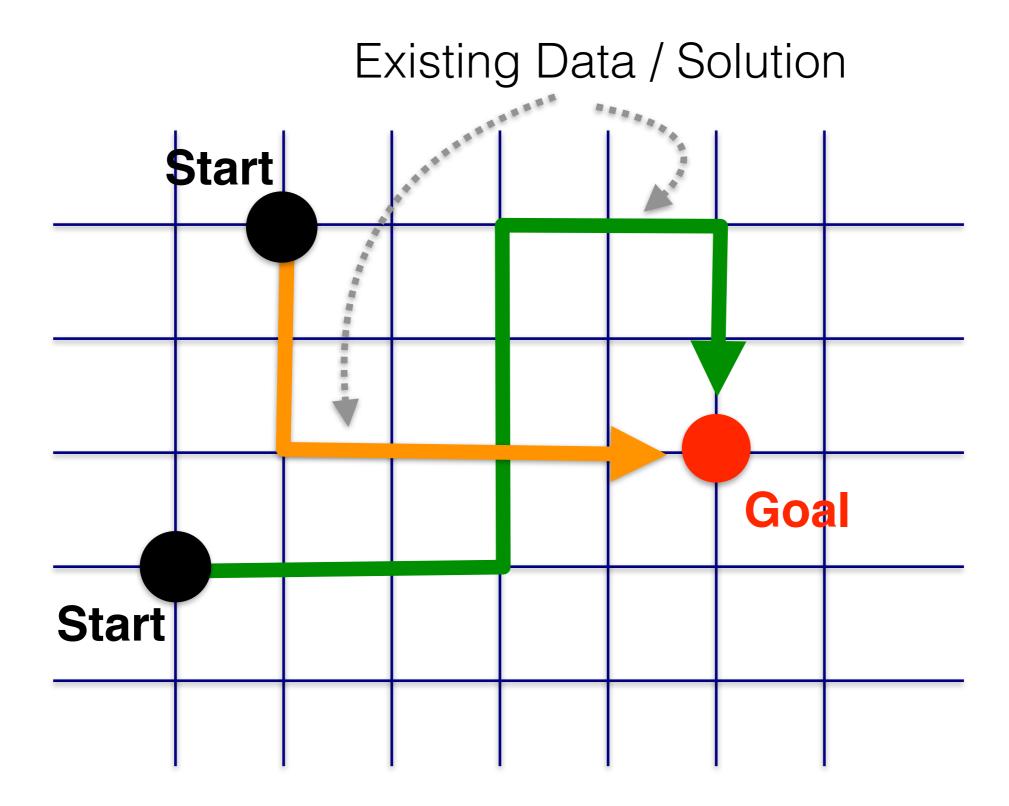


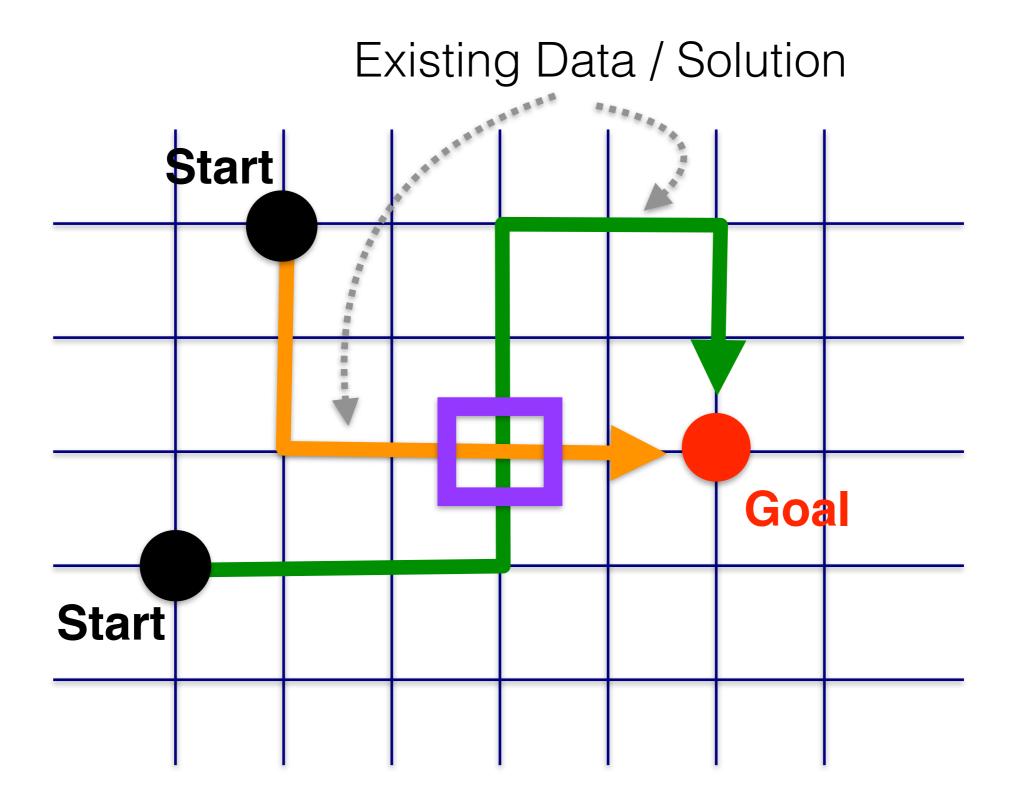
Wu et al. 2018

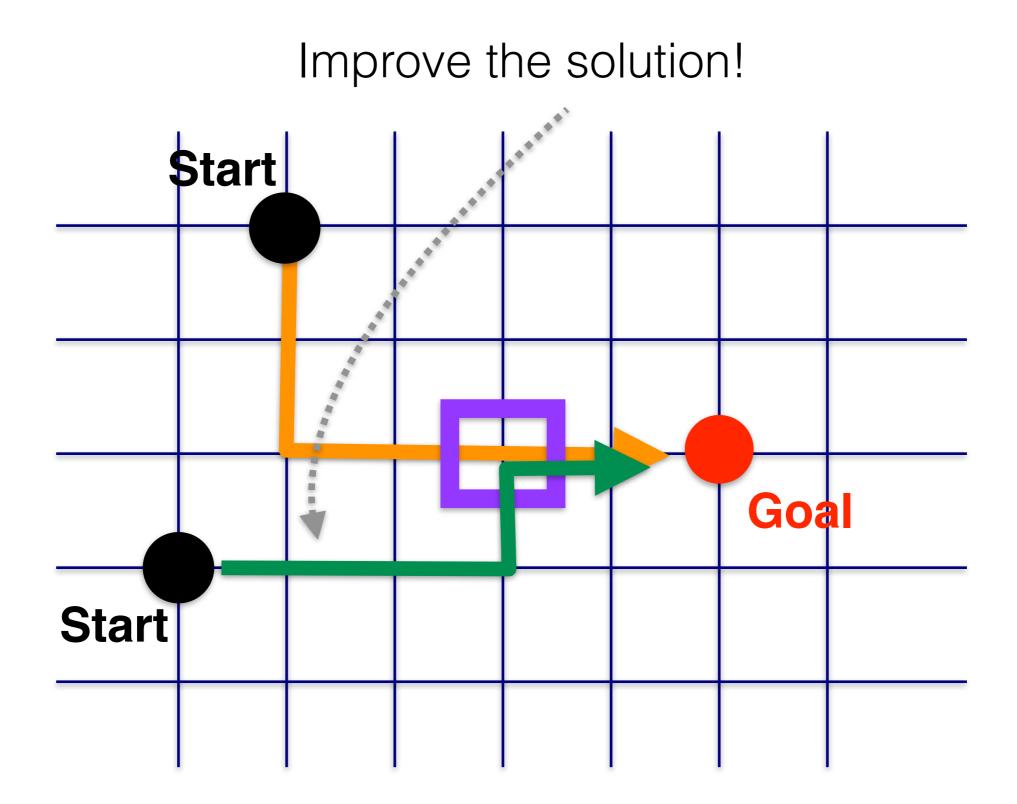
Learning Dexterity



Known Simulator, 24 degrees of freedom!

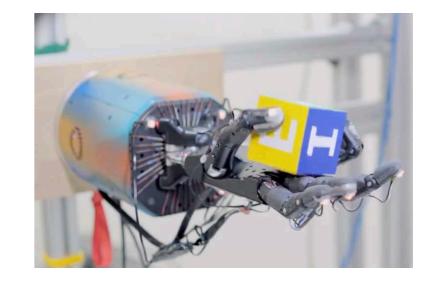




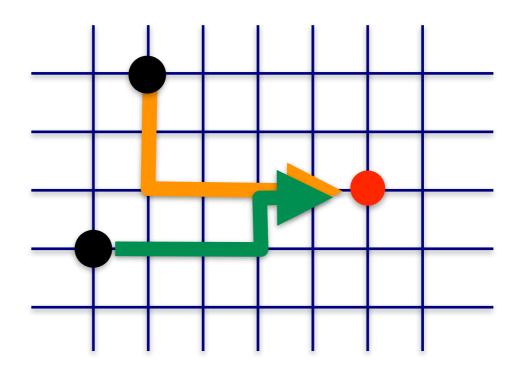


RL can be thought of as finding the "shortest path"

online decisions



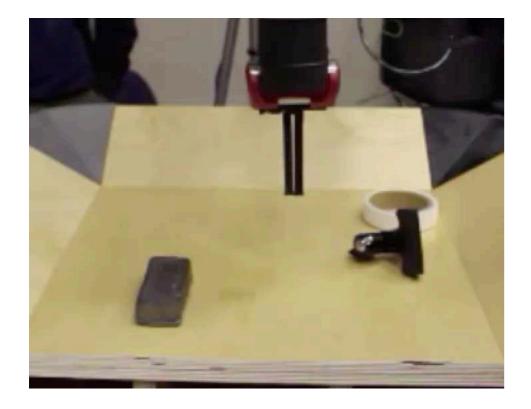
Control non-linear systems

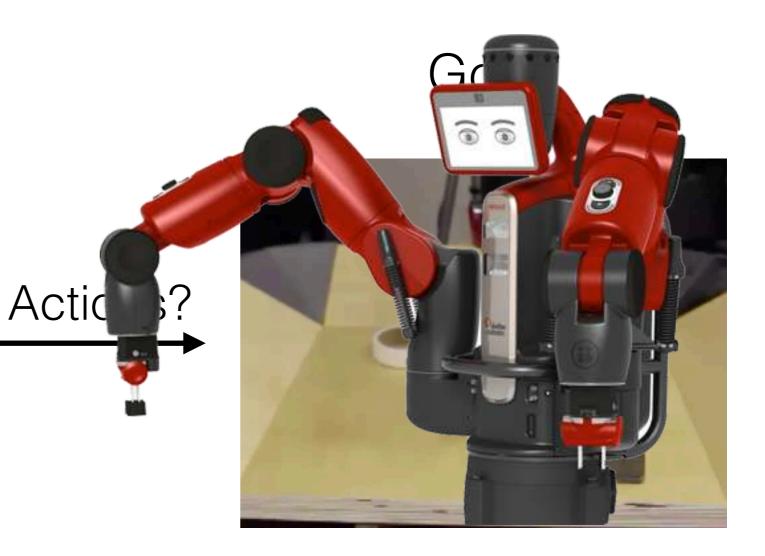


Knowledge Synthesis

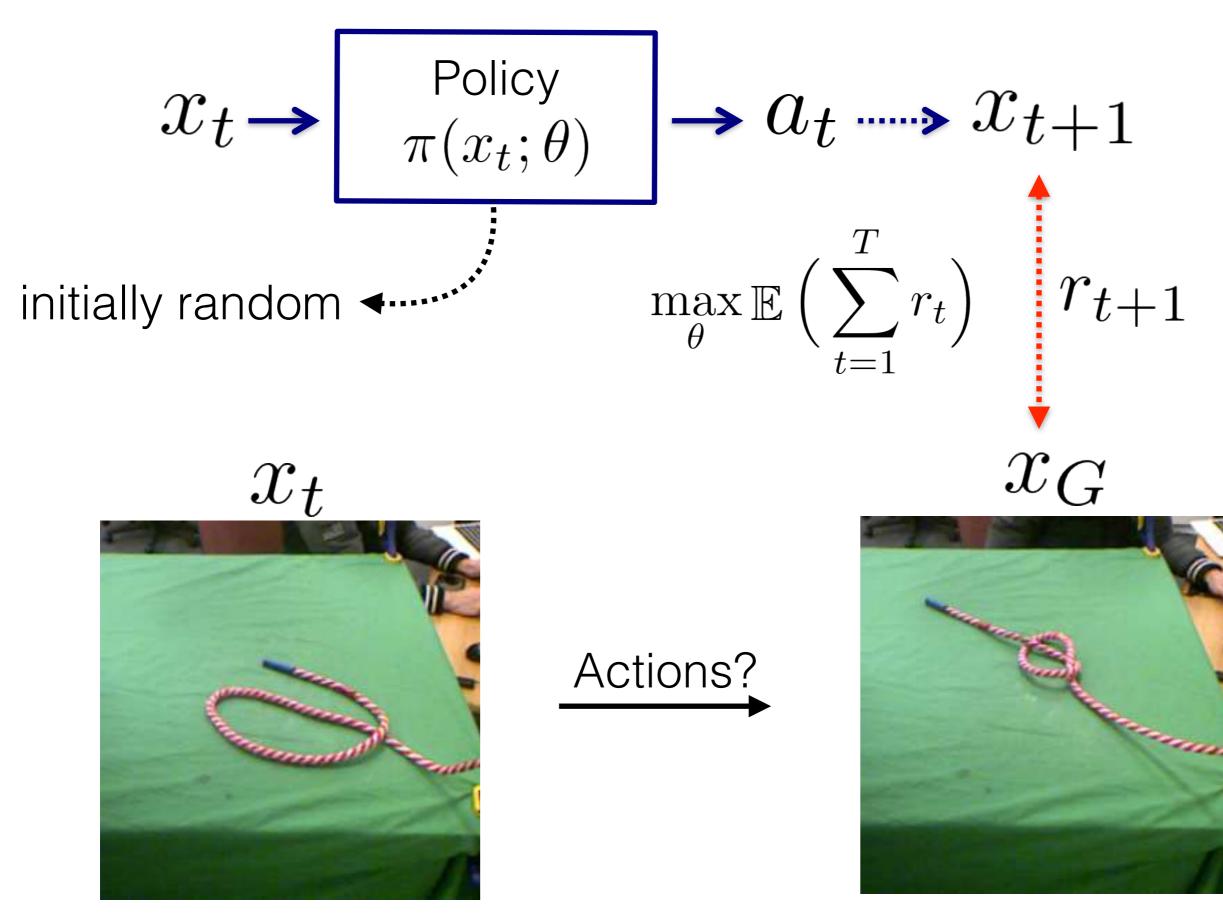
Improve existing solutions

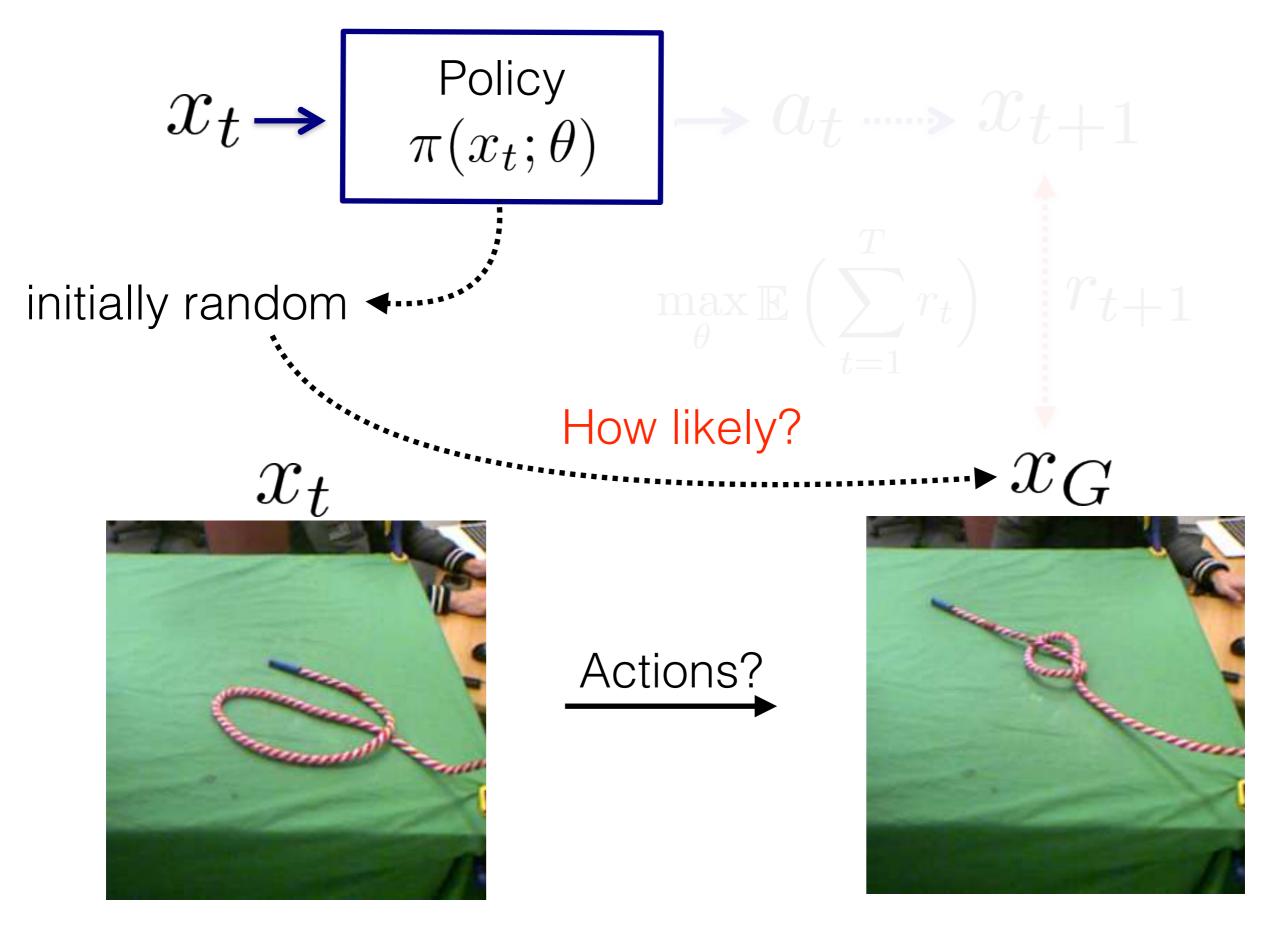
Current Observation

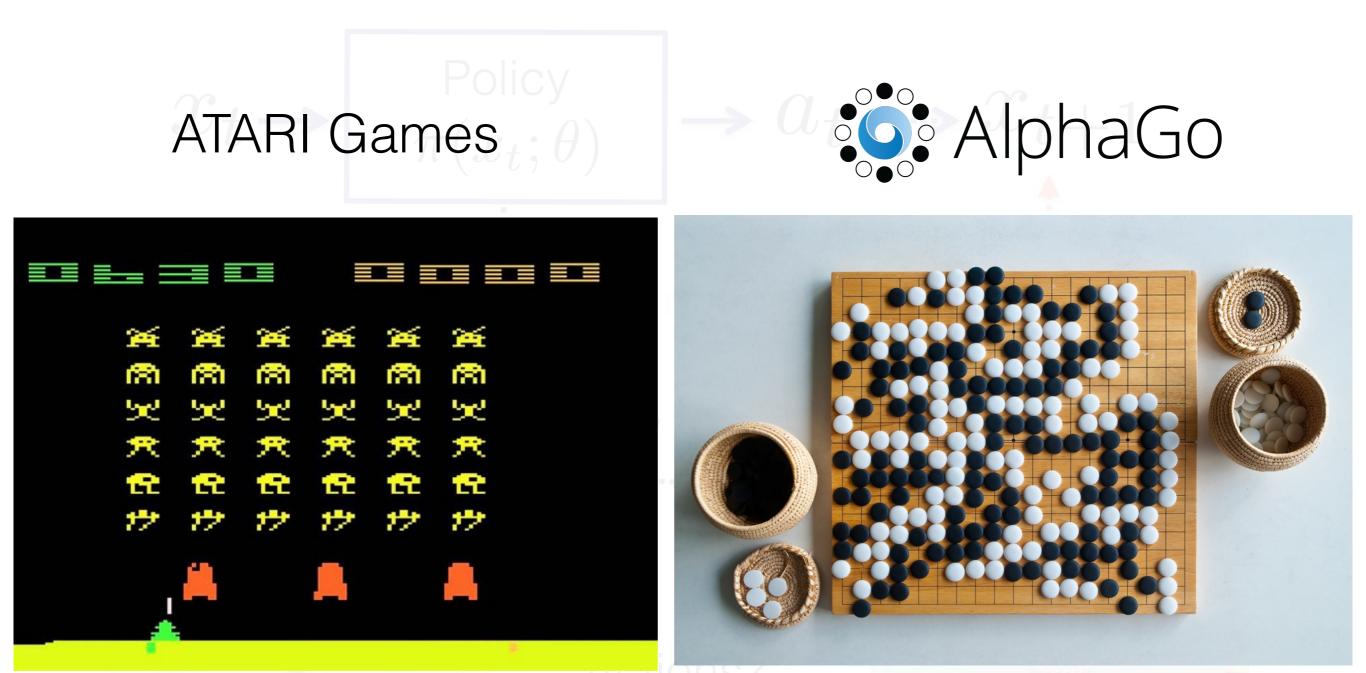






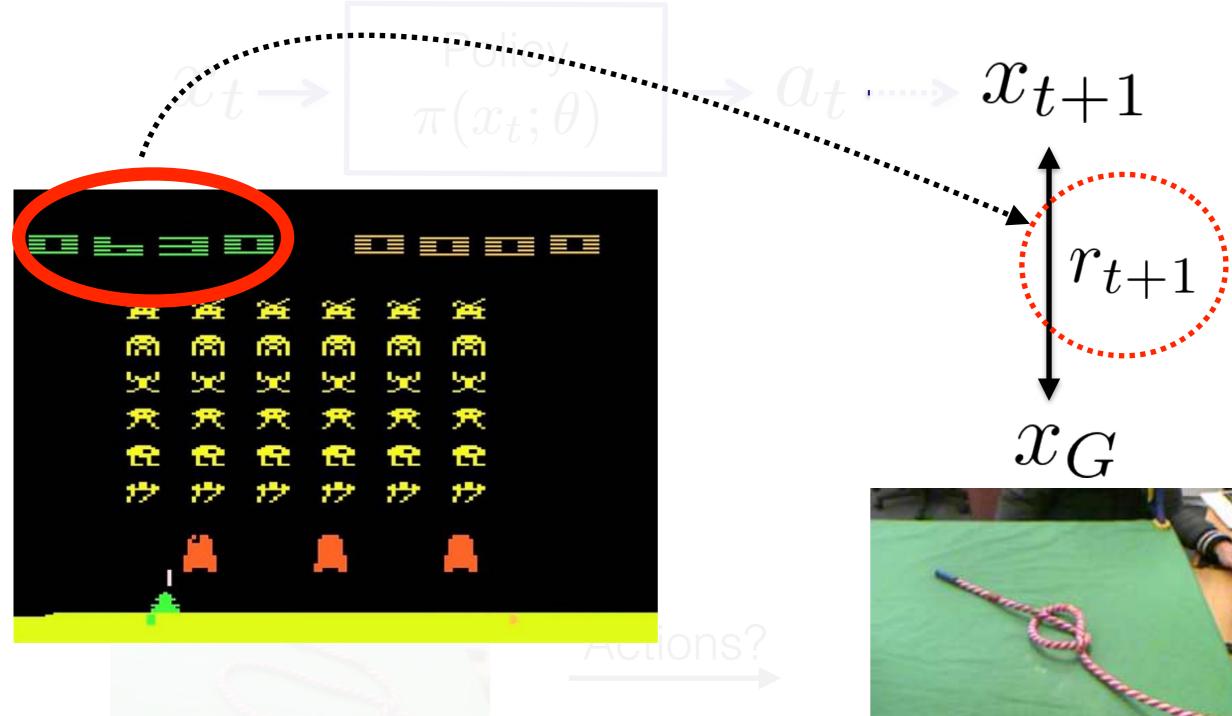




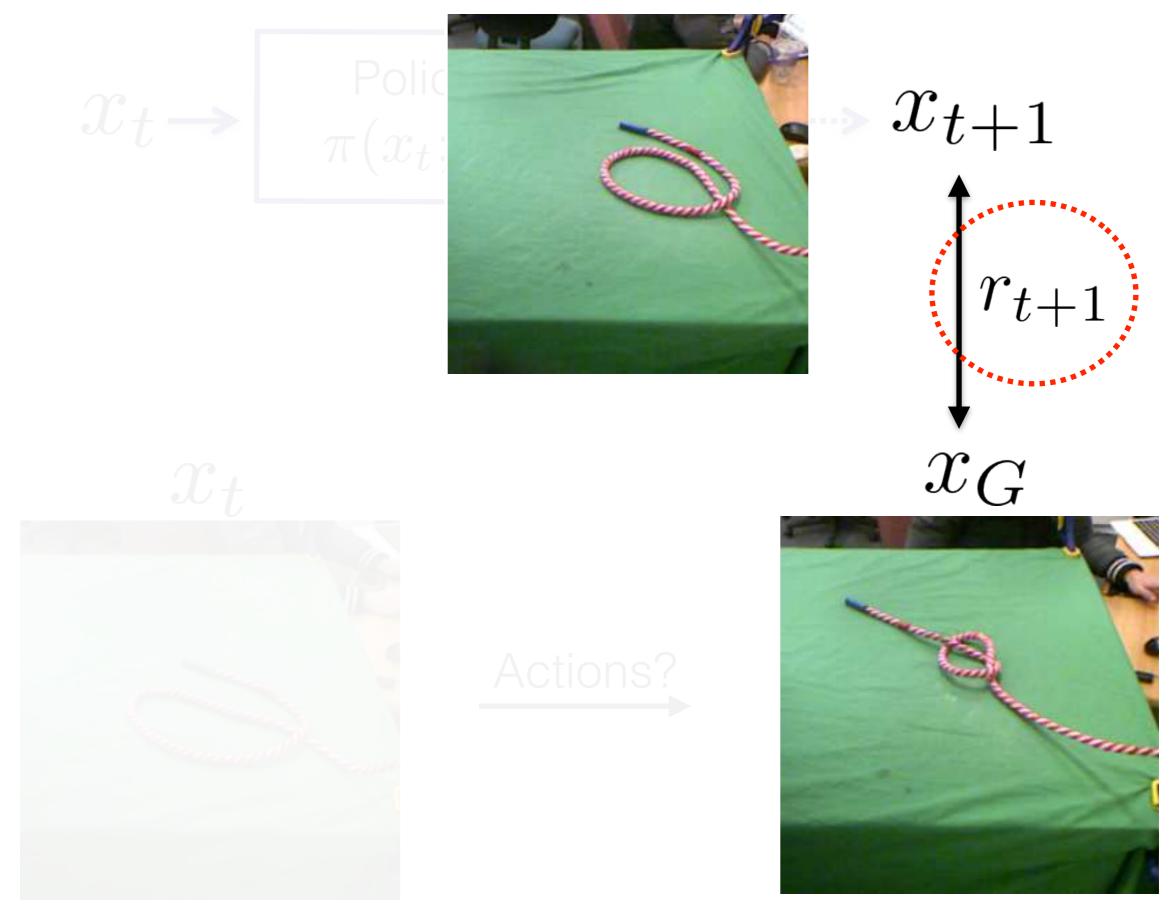


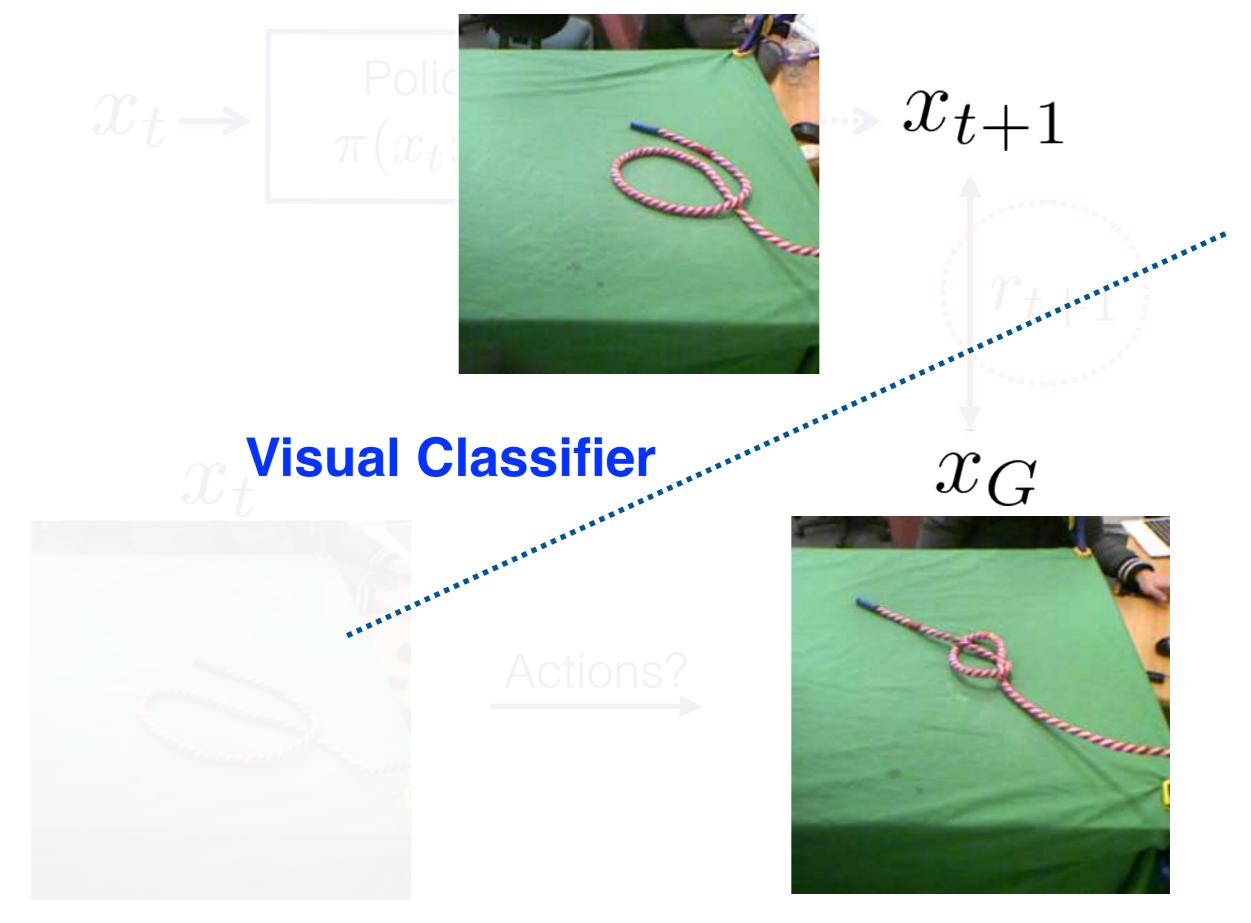
~10-50 million interactions! 21 million games!

Simulation: Ginormous number of interactions!



Game score is the reward!





 x_{t+1}

.....

Visual Classifier

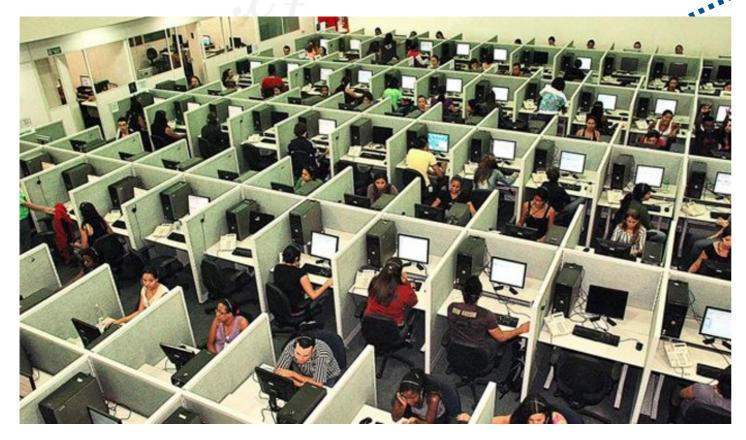
repeat for every goal!

 x_{t+1}

.....

Visual Classifier

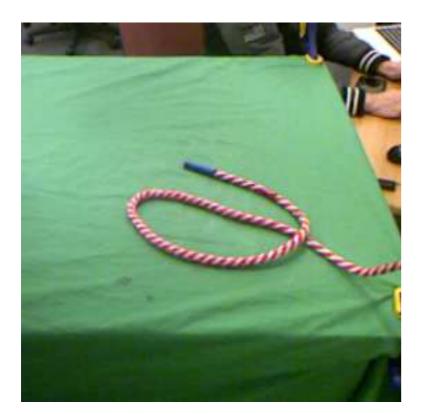
 $\mathcal{X}G$

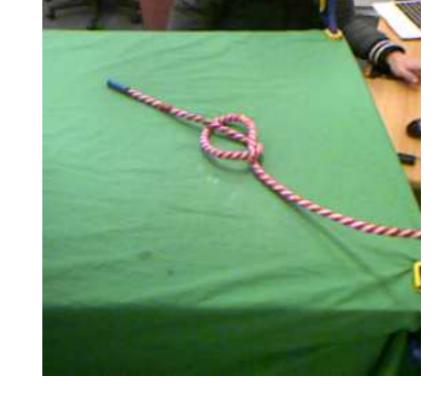


Issues with Reinforcement Learning

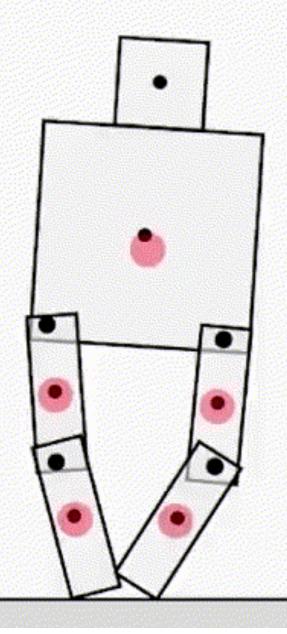
Lots of data

Task Specific



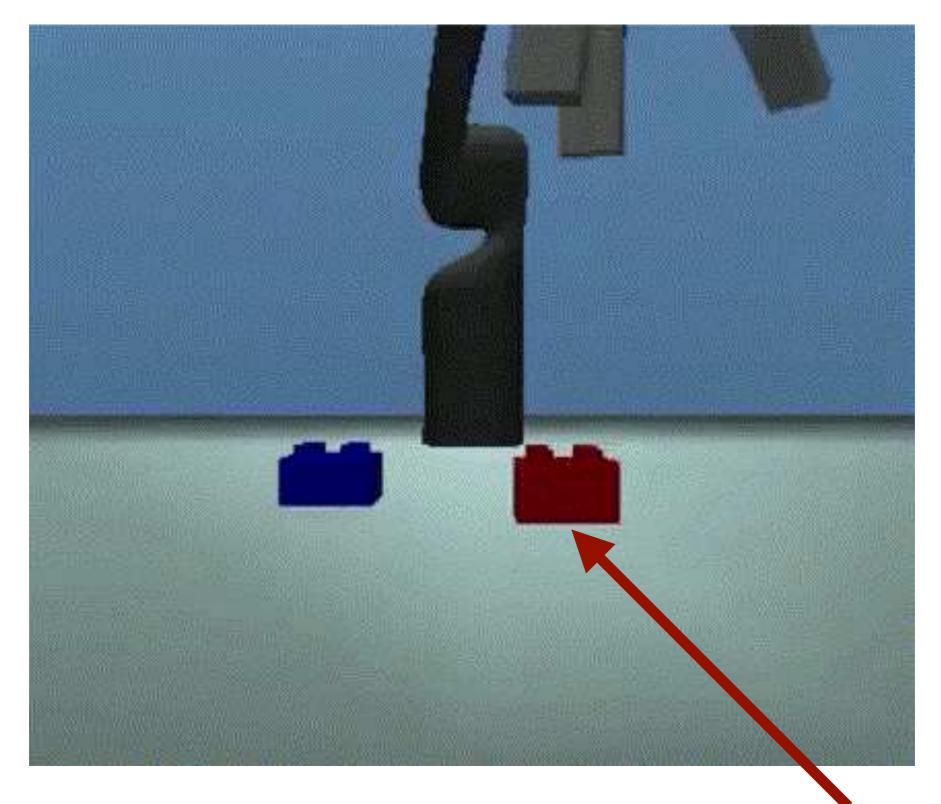


Learning to walk using RL



Reward to move right

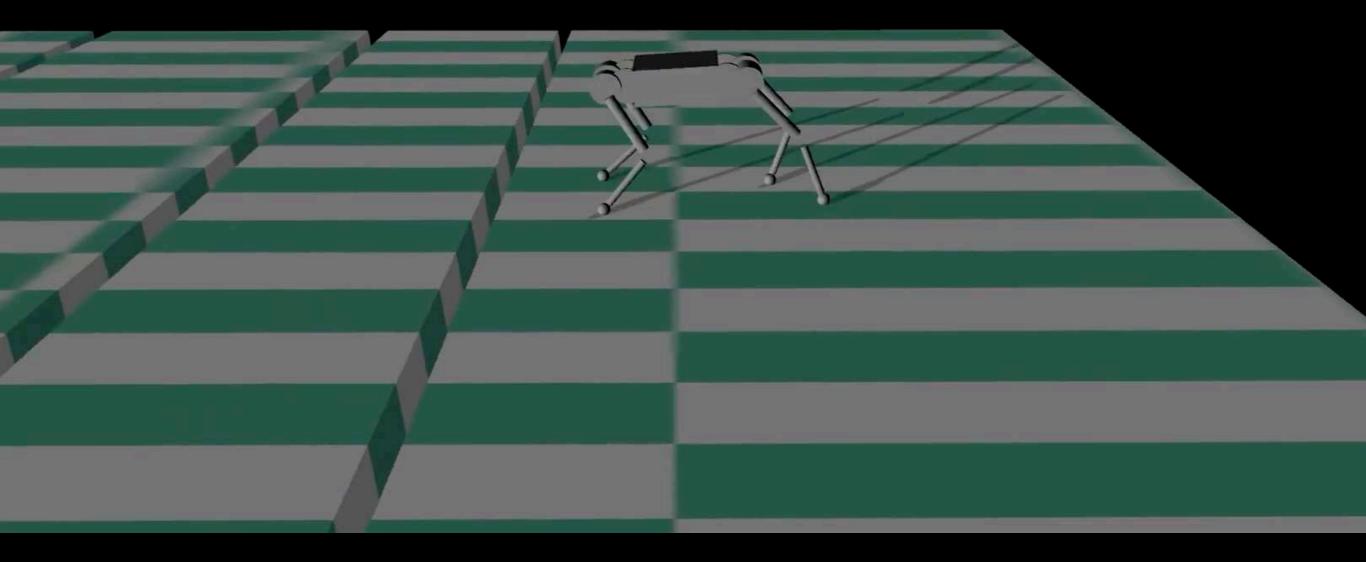
Learning to stack using RL

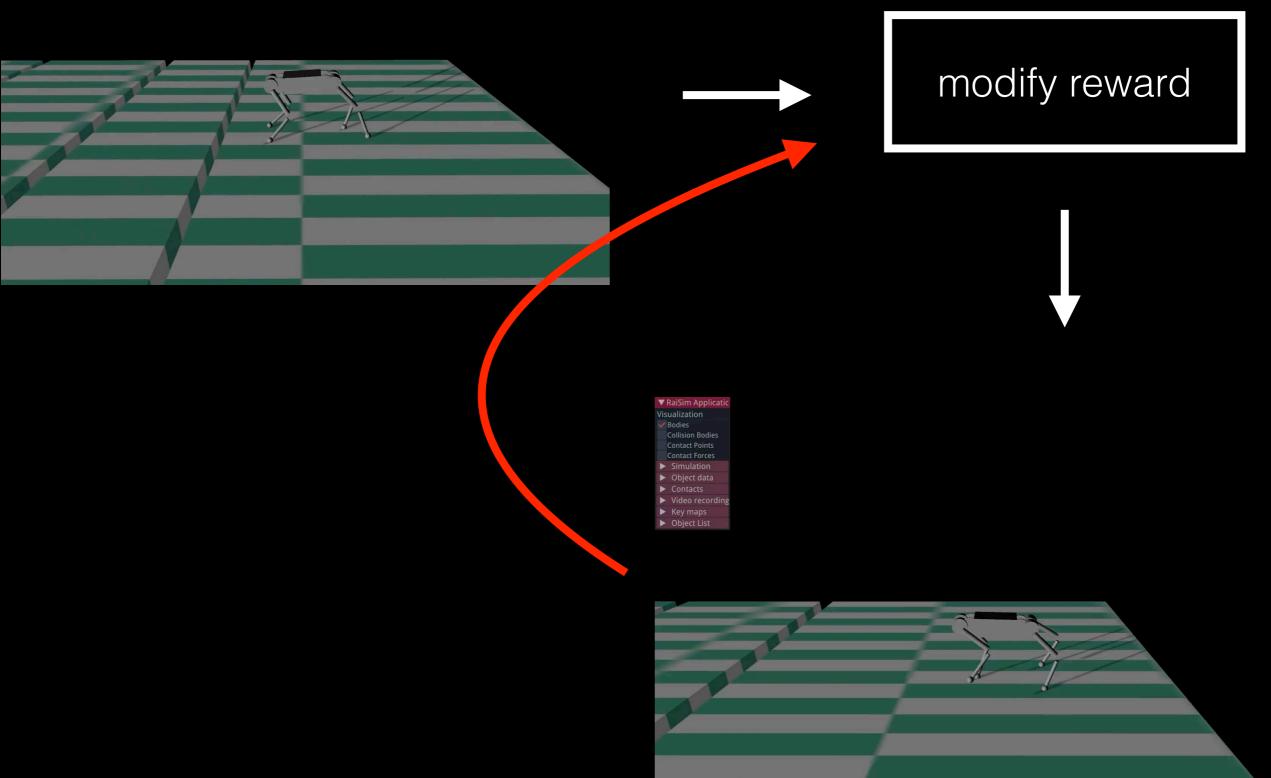


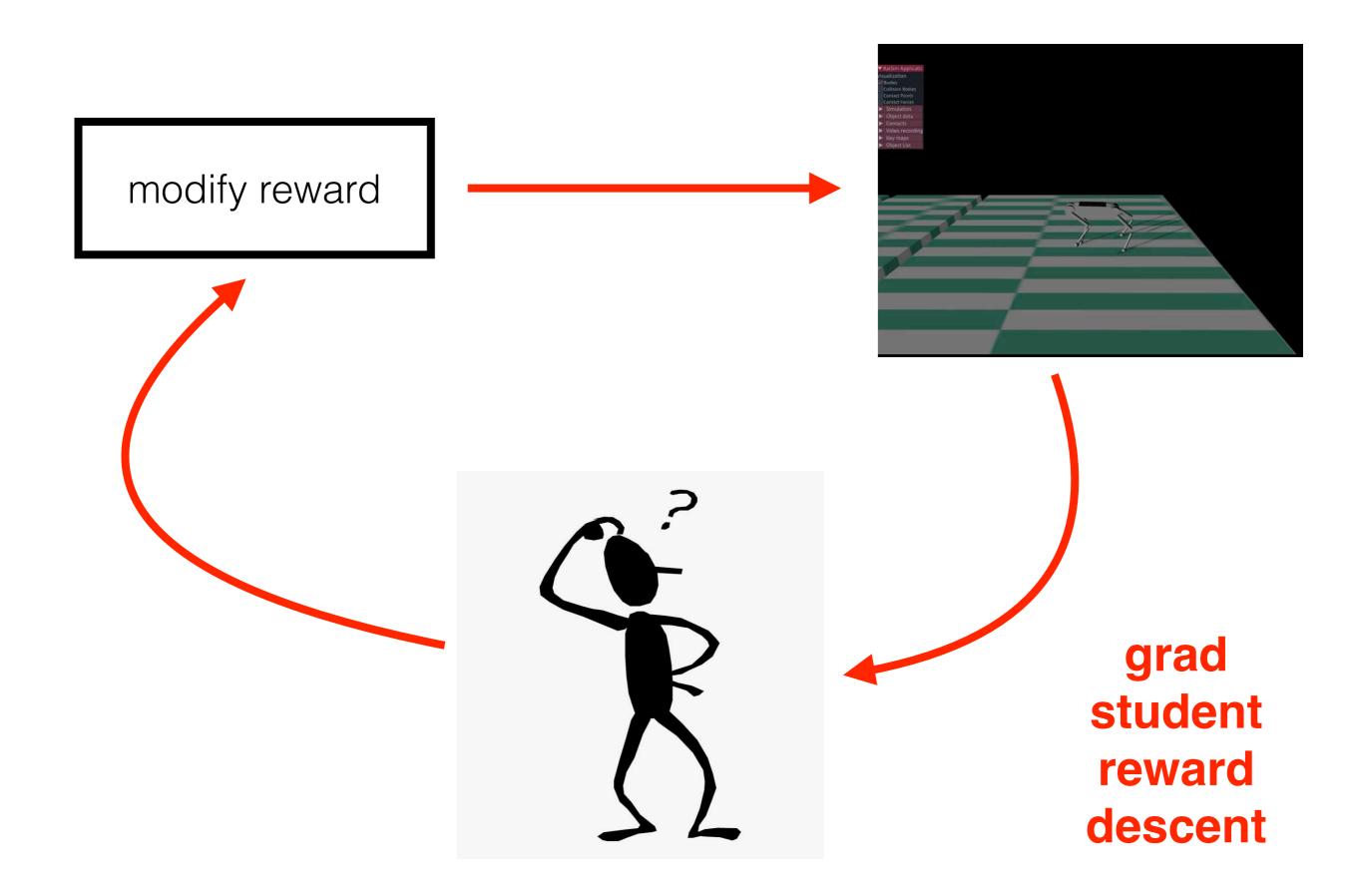
Reward for the bottom of the block to be raised

▼ RaiSim Applicatic

- Visualization
- V Bodies
- Collision Bodies Contact Points
- Contact Forces
- Simulation
- Object data
- ▶ Contacts
- ▶ Video recording
- Key maps
- ▶ Object List



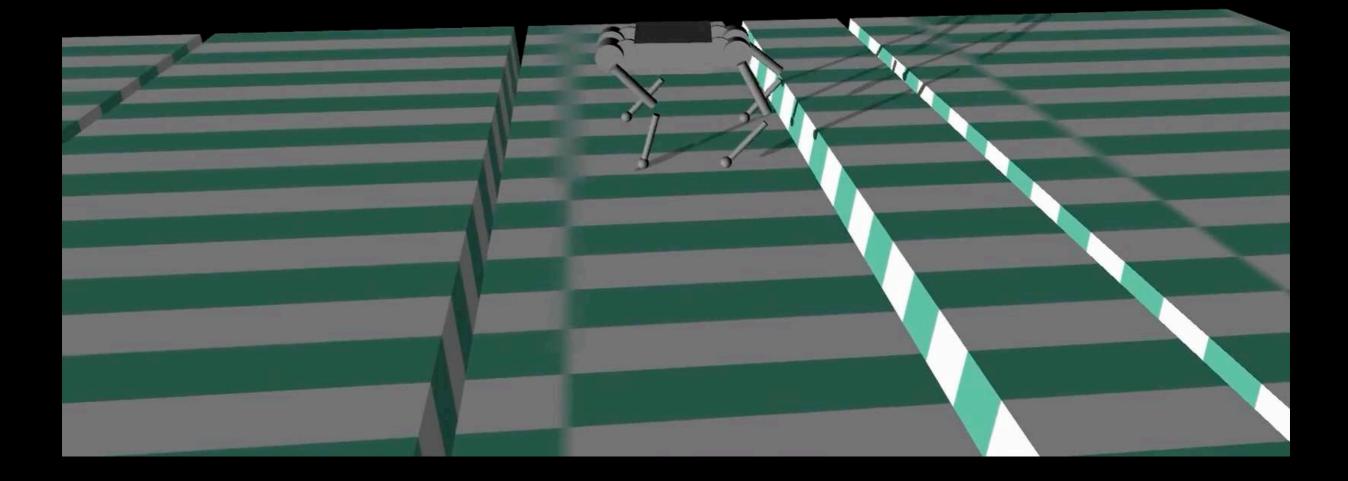




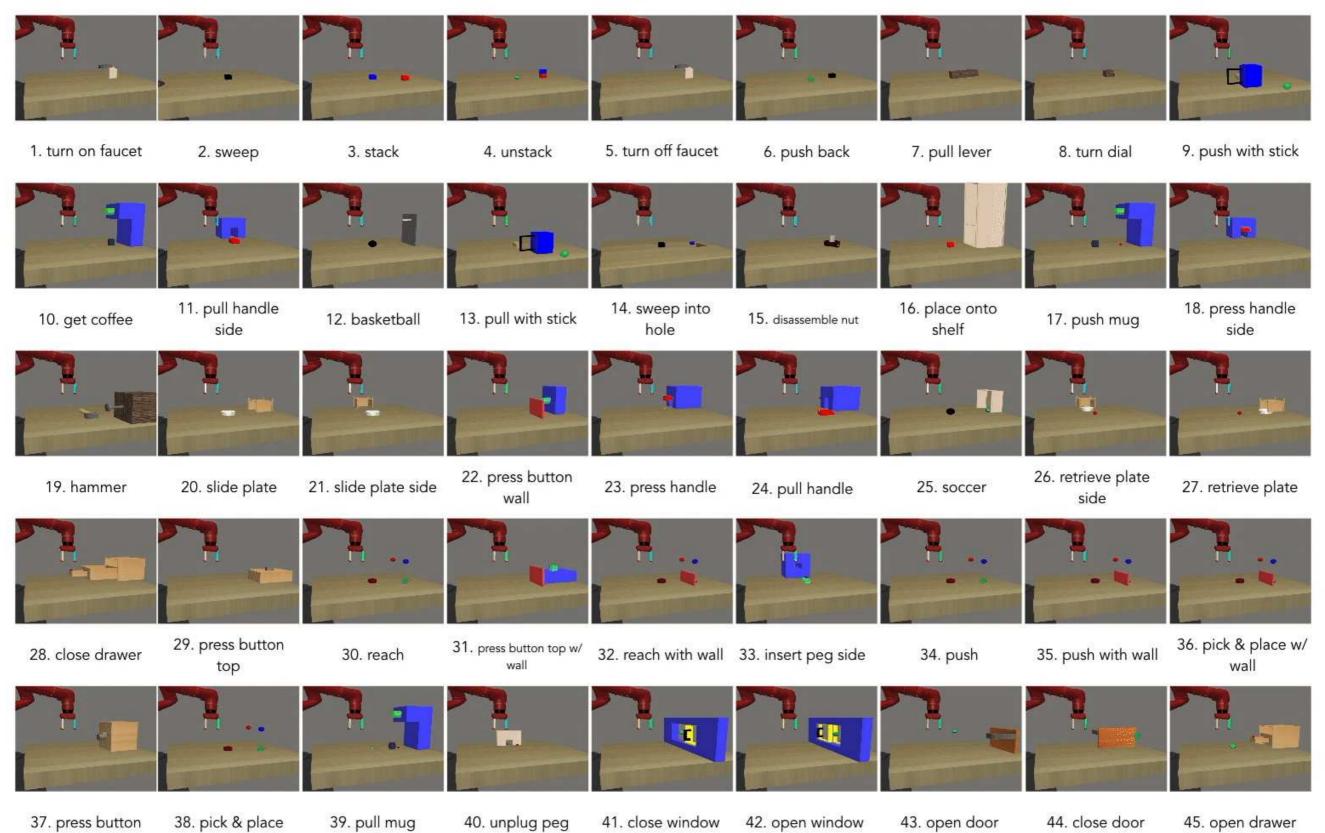
Eventually works .. but not the desired way

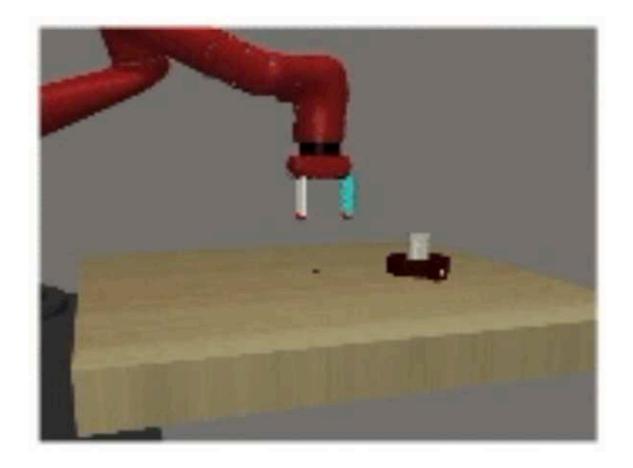
V	RaiSim Applicati
Visualization	
	Bodies
	Collision Bodies
	Contact Points
	Contact Forces
	Simulation
	Object data
	Contacts
۲	Video recordin
	Key maps

Object List



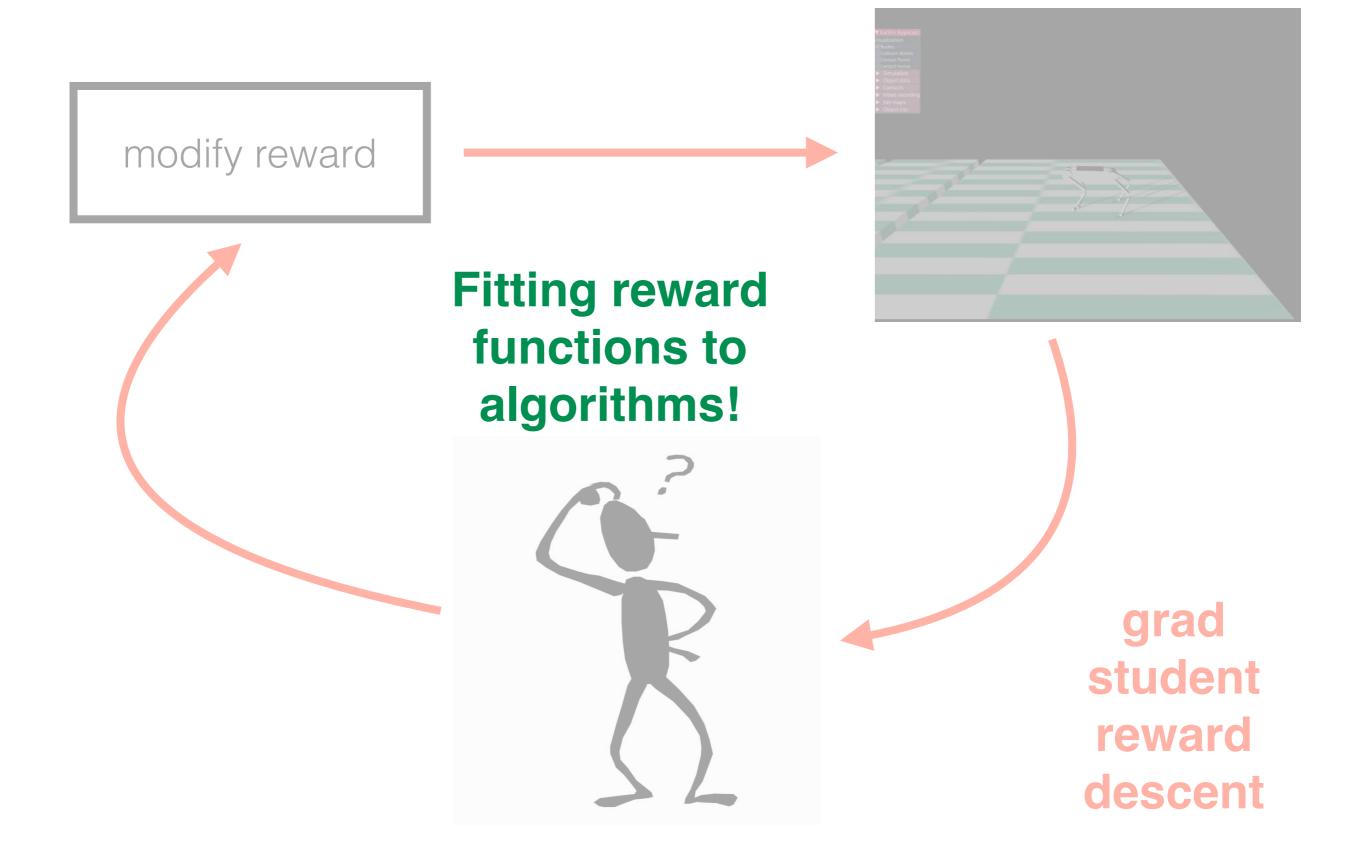
Train tasks



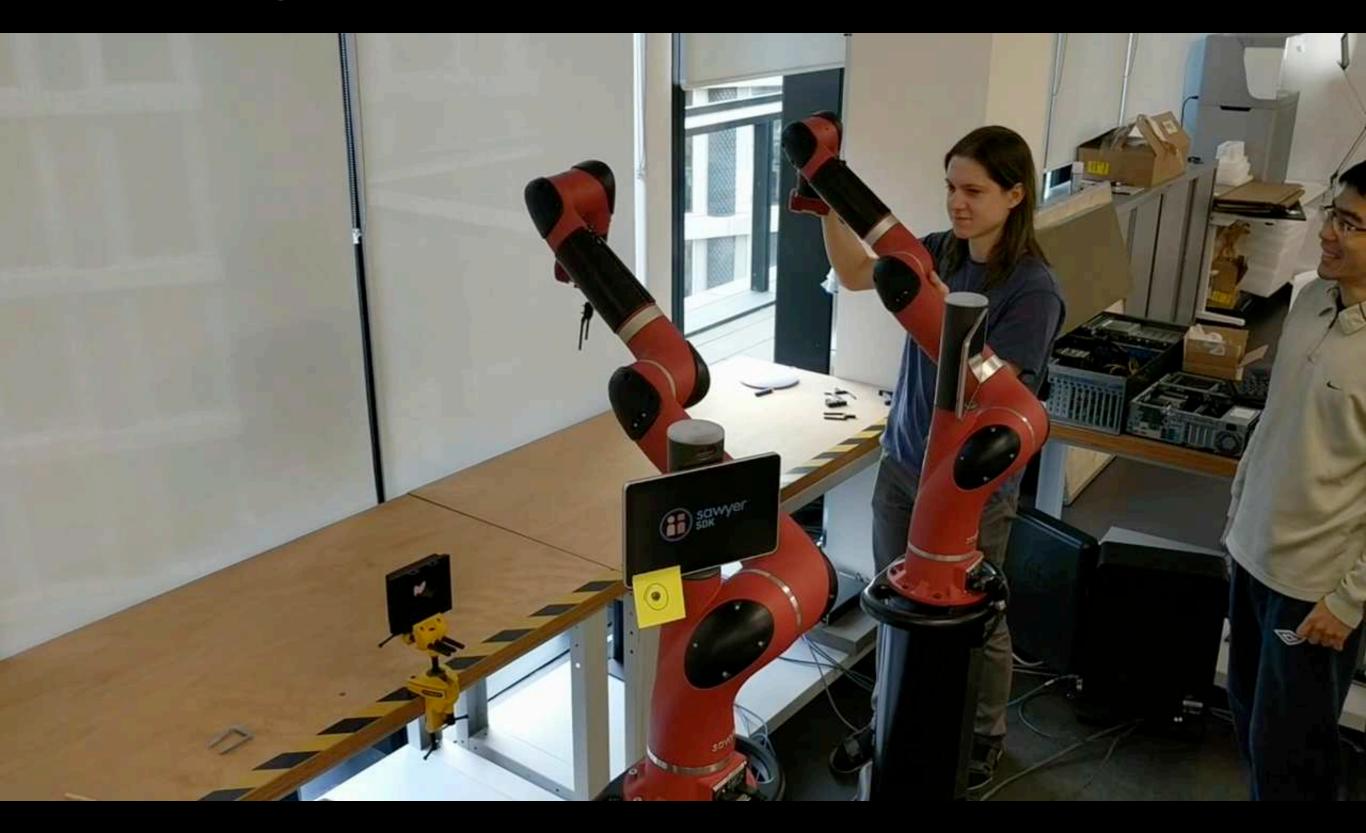


```
def reachReward():
```

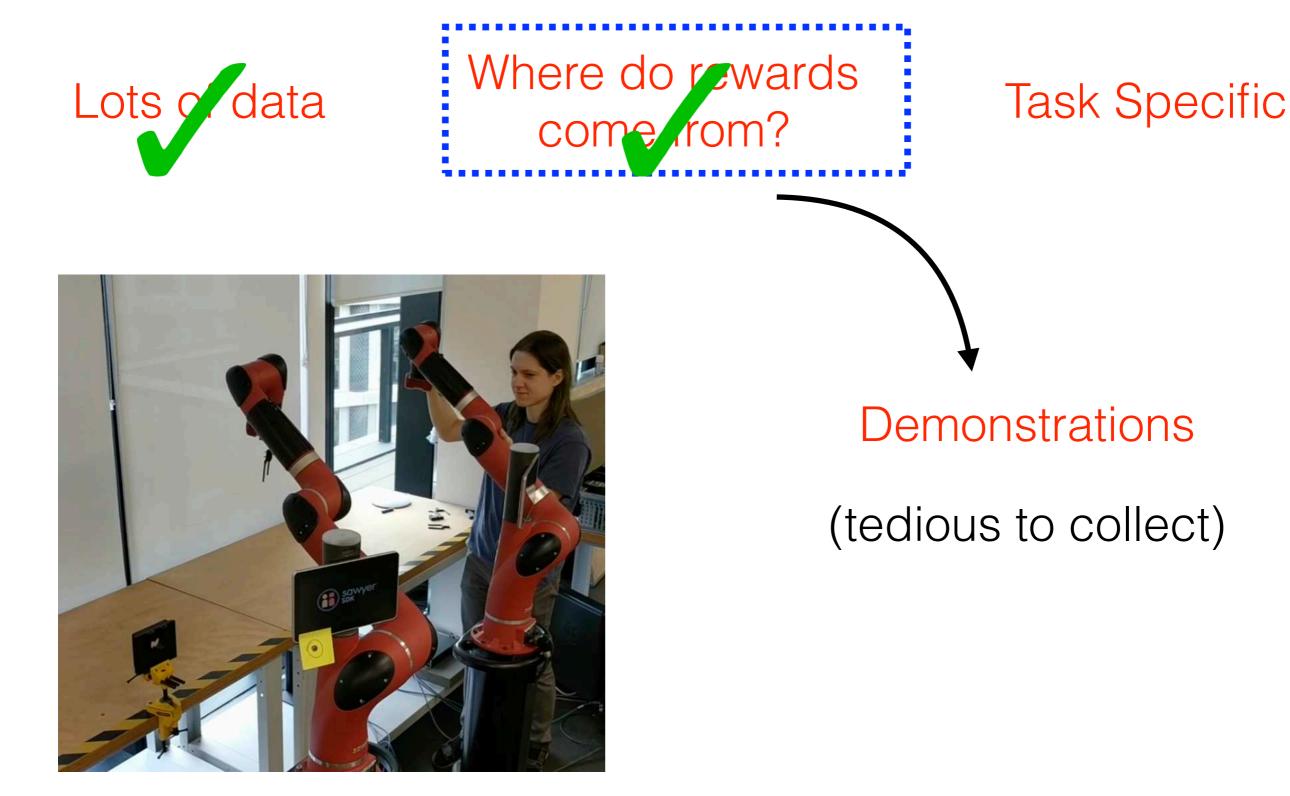
:**2)/c2) + np.exp(-(placingDist**2)/c3))



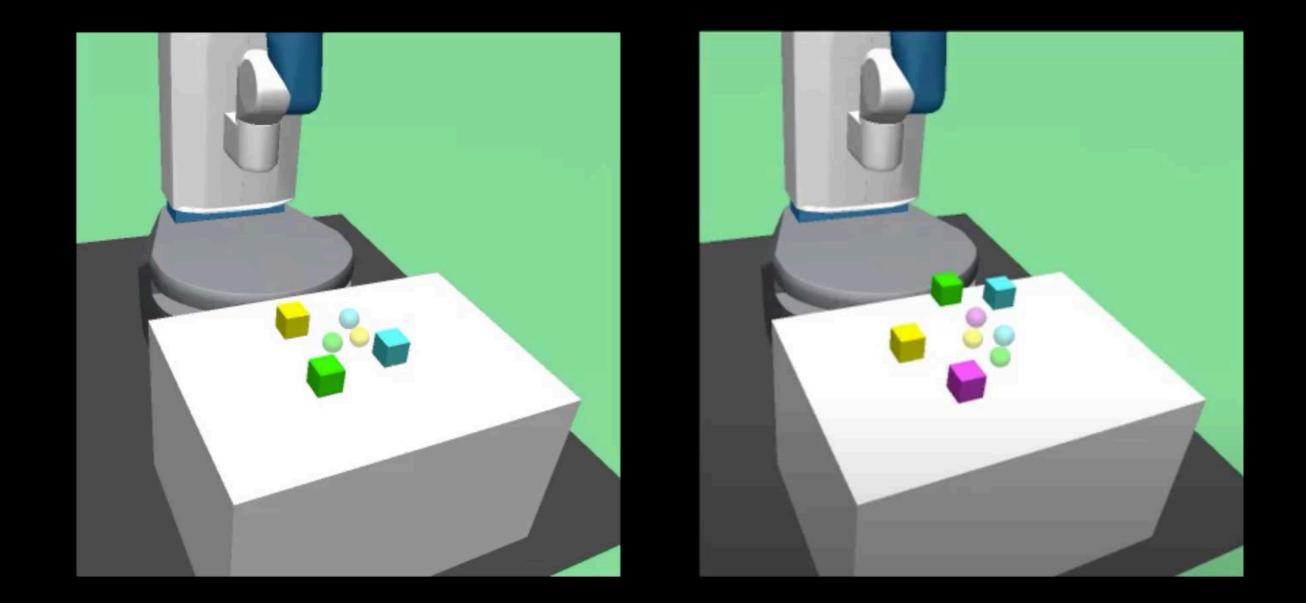
Overcoming Reward Specification: Provide Demonstrations



Issues with Reinforcement Learning



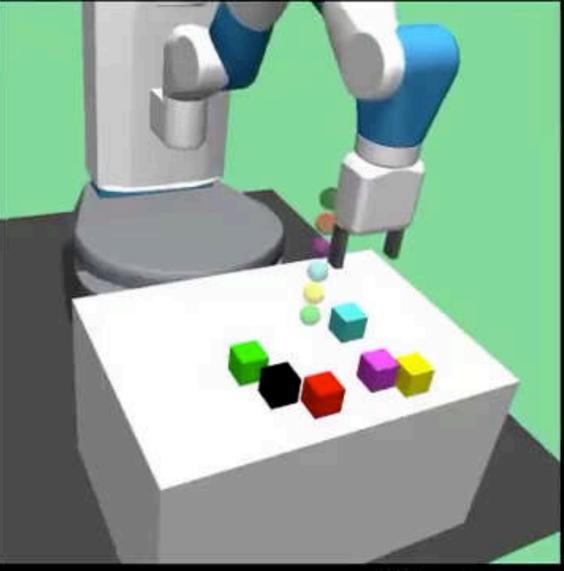
Consider Block Stacking



State Space: Position/Orientation of Blocks Action Space: Position of end effector + open/close gripper

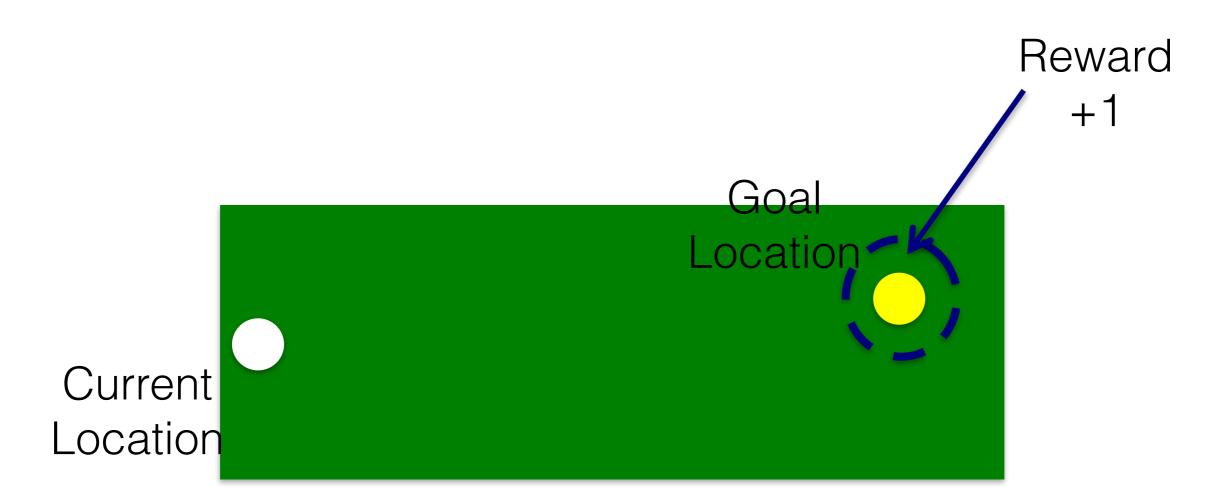
Pure RL on this Task

Standard RL + No Curriculum



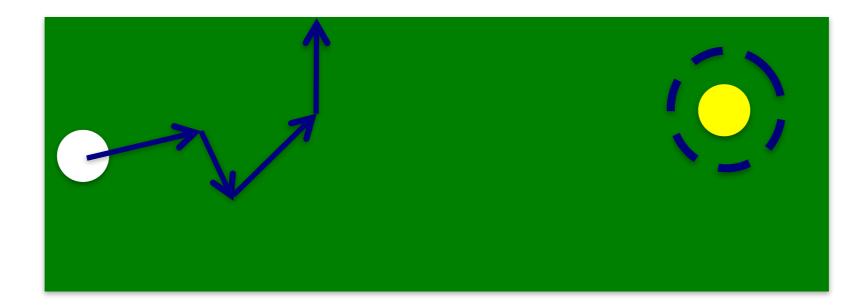
30 mil steps

The case of "sparse" reward

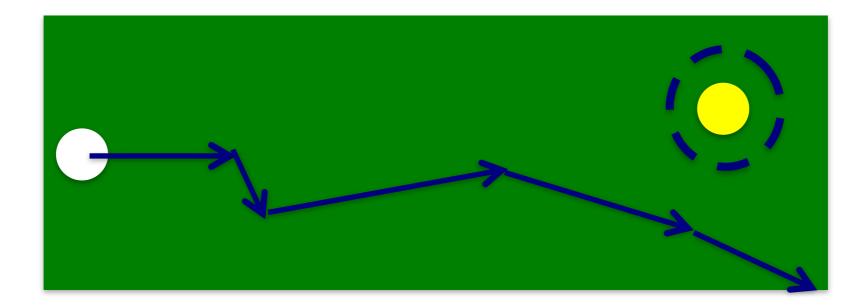


Sparse Rewards: Typically easy to define

"0" Reward



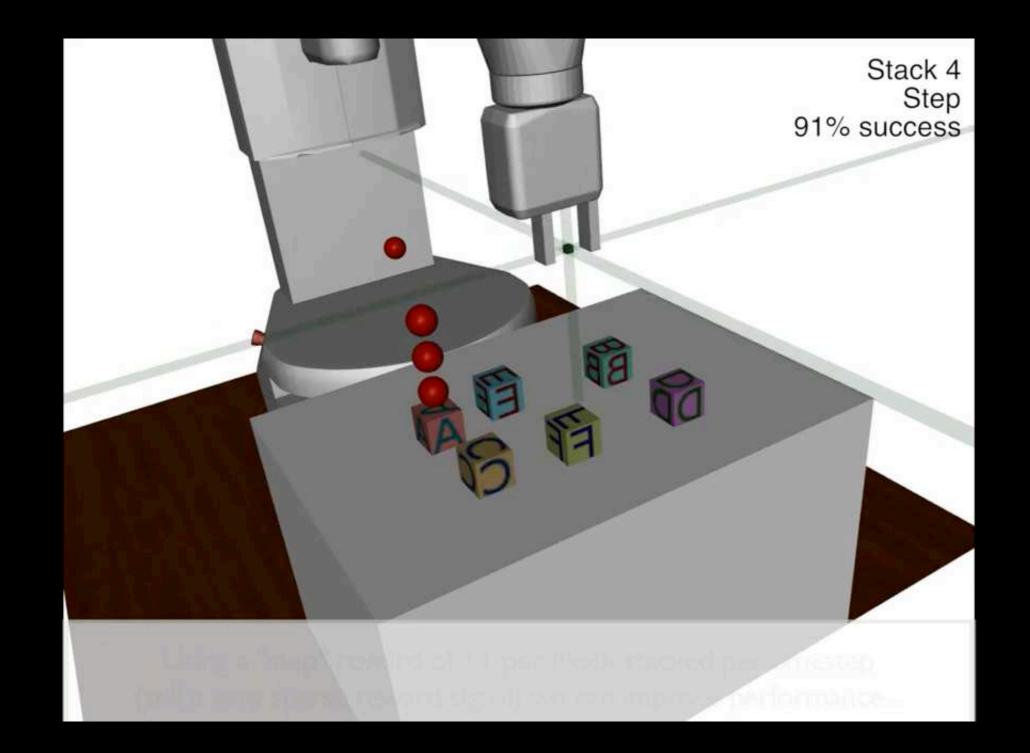
"0" Reward



"0" Reward

Exploration Problem

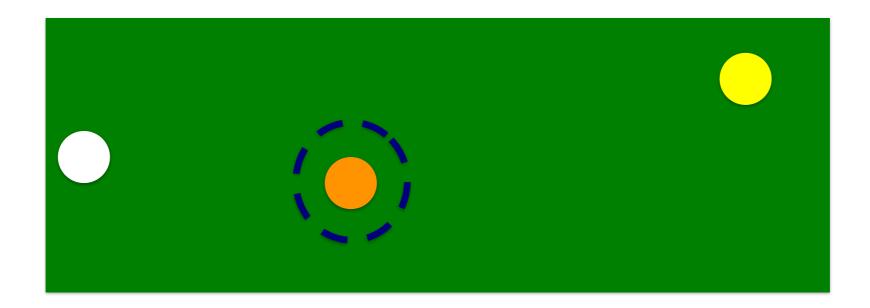
Using Demonstrations to Overcome Exploration



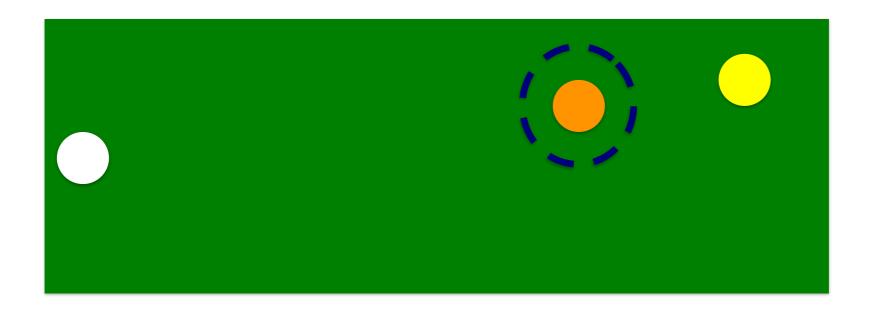
Start with goal close to initial state



Slowly move the goal farther

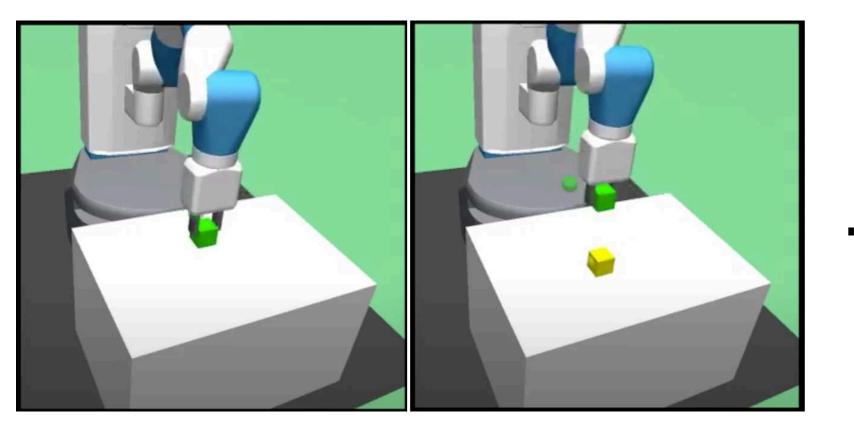


Slowly move the goal farther



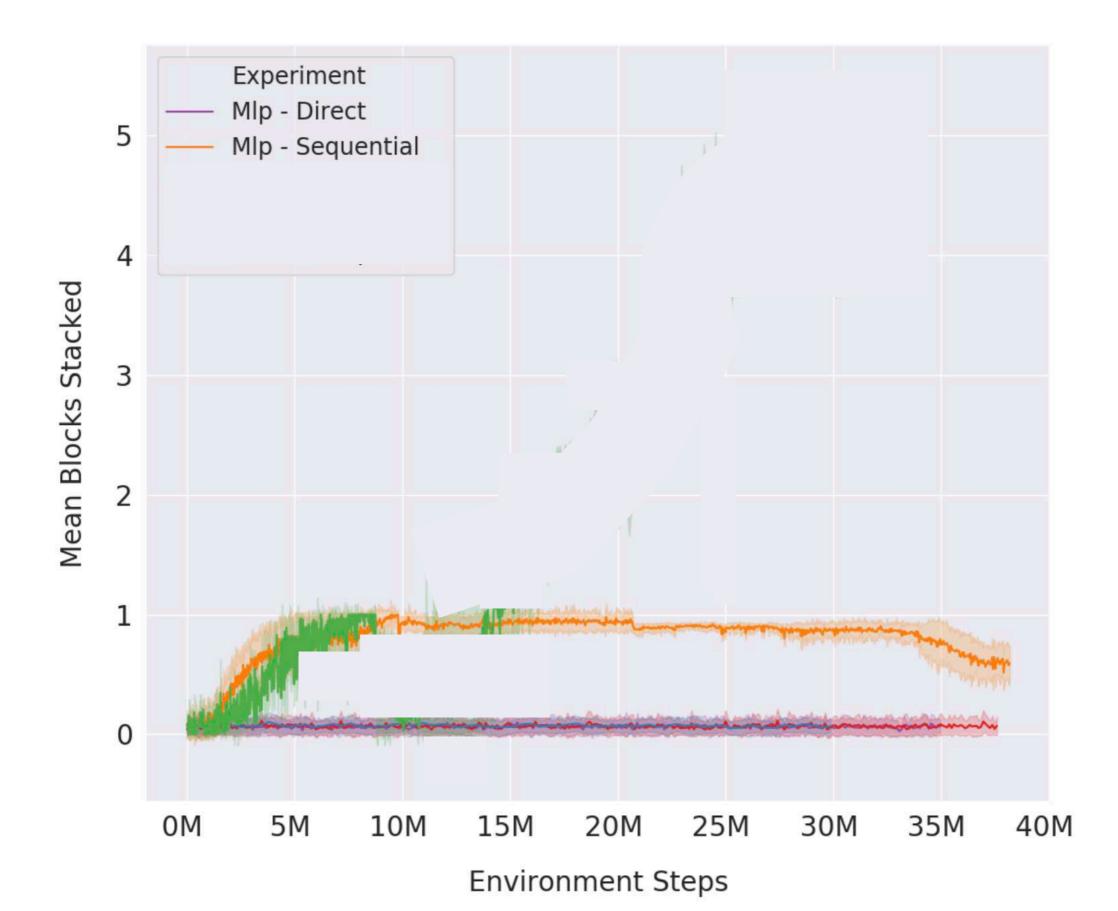
Slowly move the goal farther

Creating a Task Curriculum

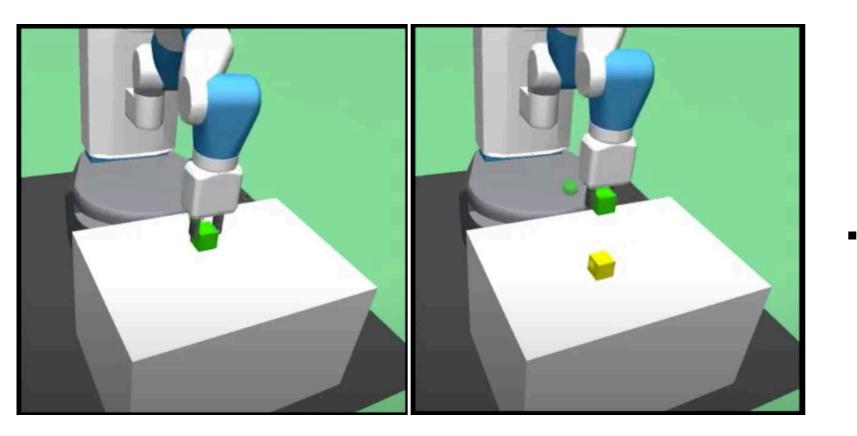


Towards Practical Robot Manipulation Using Relational Reinforcement Learning, ICRA 2020

Using Curriculum Stacks Only 1 Block



Why did the curriculum fail?

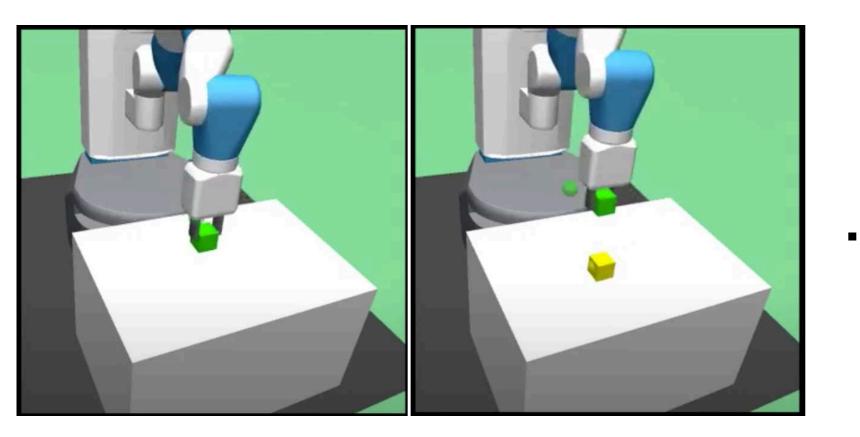


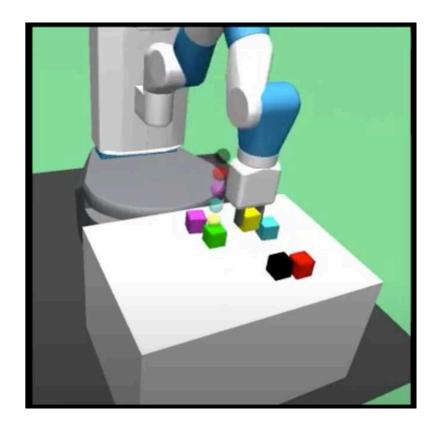
 $s:(x_1,y_1)$ $\pi(s;\theta)$

 $s:(x_1, y_1, x_2, y_2)$

 $s: (x_1, y_1, \dots, x_N, y_N)$

Why did the curriculum fail?





 $s:(x_1, y_1)$

$$s:(x_1, y_1, x_2, y_2)$$

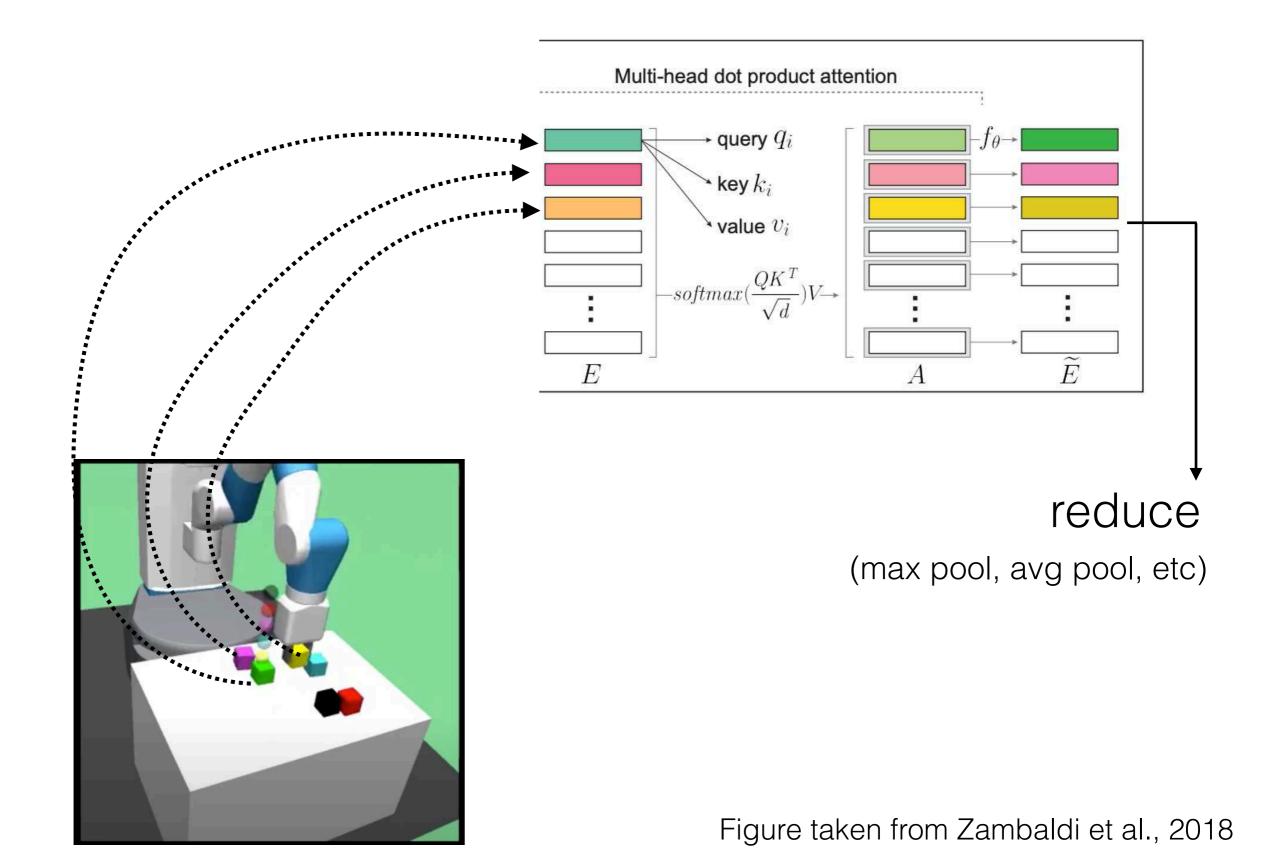
 $\pi(s;\theta)$

 \mathcal{A}

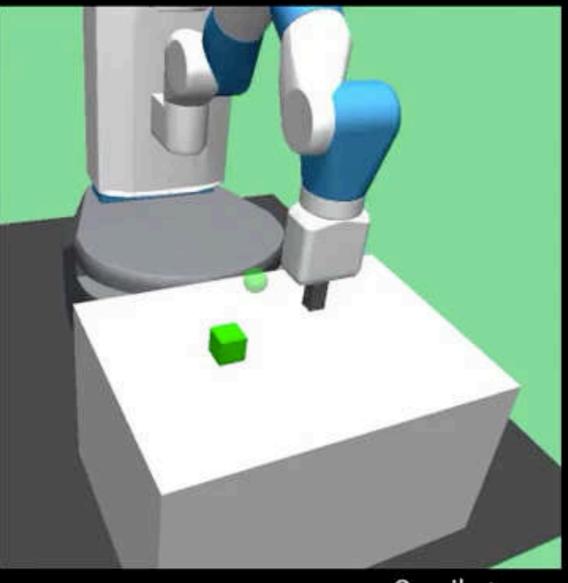
$$s:(x_1,y_1,\ldots,x_N,y_N)$$

May not generalize to the new state space!

Graph Neural Network for Generalizable State Representation



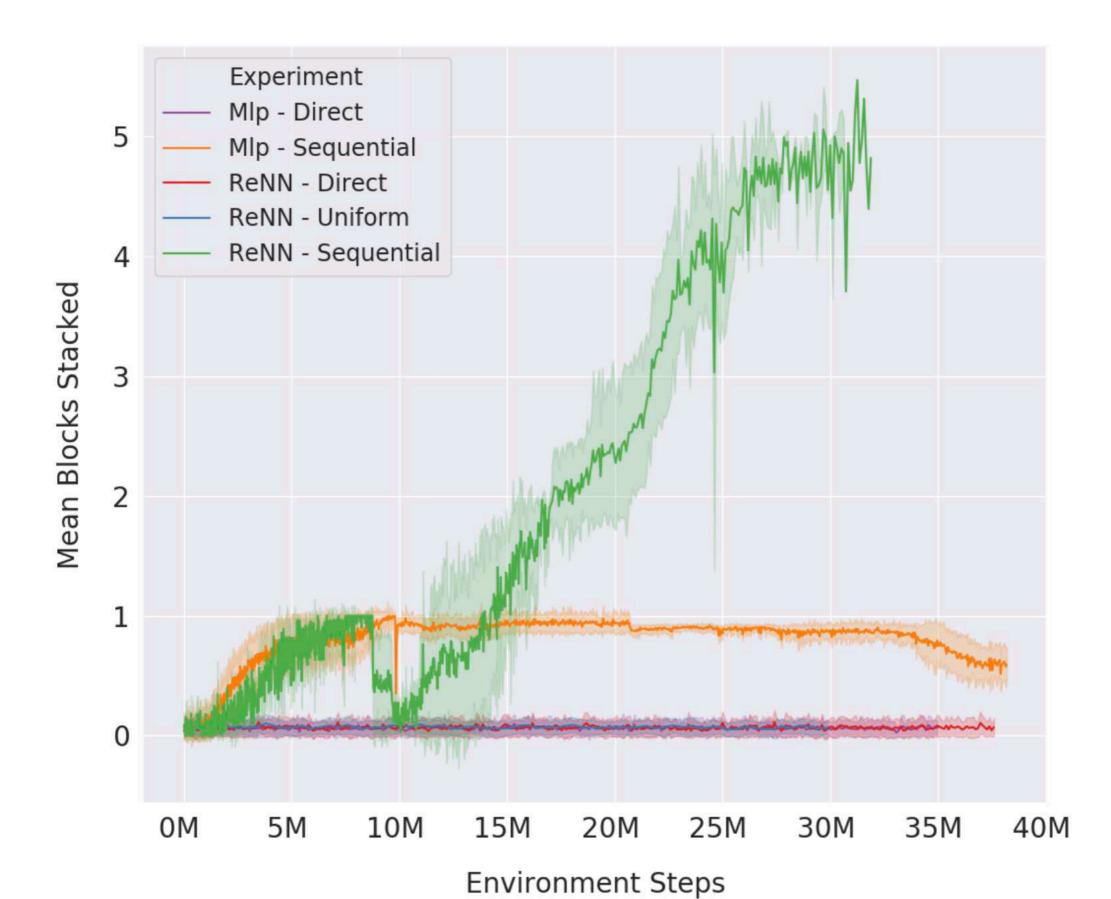
Our Method



9 mil steps

Towards Practical Robot Manipulation Using Relational Reinforcement Learning, ICRA 2020

Both Graph Network (ReNN) + Curriculum are Important



Prior Work

Nair et al.: Human Demonstrations

Task	Single Tower 4	Single Tower 5	Single Tower 6
Nair'17 [4]	91% (850M)	50% (1000M)	32% (2300M)

Zero Shot Generalization

Generalization w/o Fine-tuning



training

Towards Practical Robot Manipulation Using Relational Reinforcement Learning, ICRA 2020

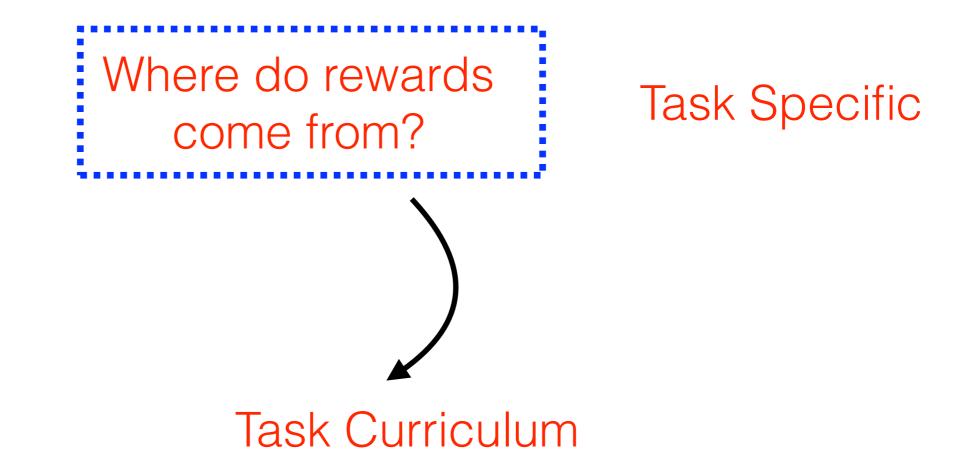
Emergent Behaviors

Emergent Behaviors

Towards Practical Robot Manipulation Using Relational Reinforcement Learning, ICRA 2020

Issues with Reinforcement Learning

Lots of data



(less human effort than demonstrations)

Take away

State representations must have inductive biases to generalize to more complex tasks

Issues with Reinforcement Learning

Lots of data

Where do rewards come from?

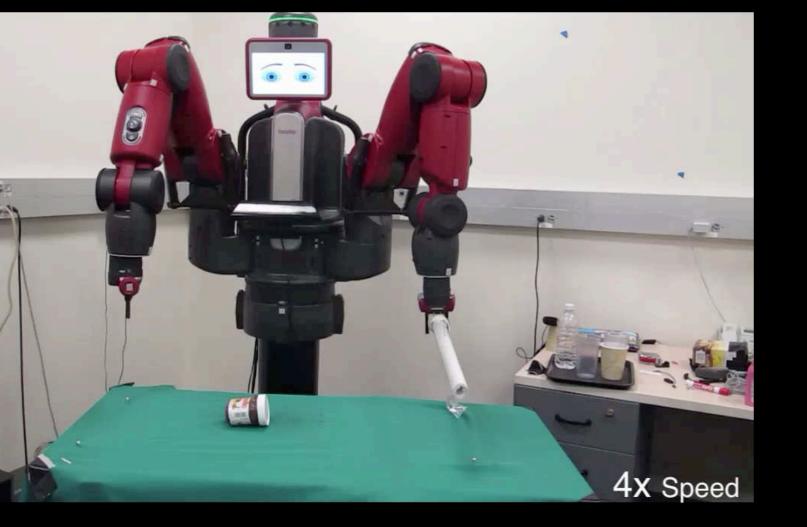
Task Specific

Demonstrations

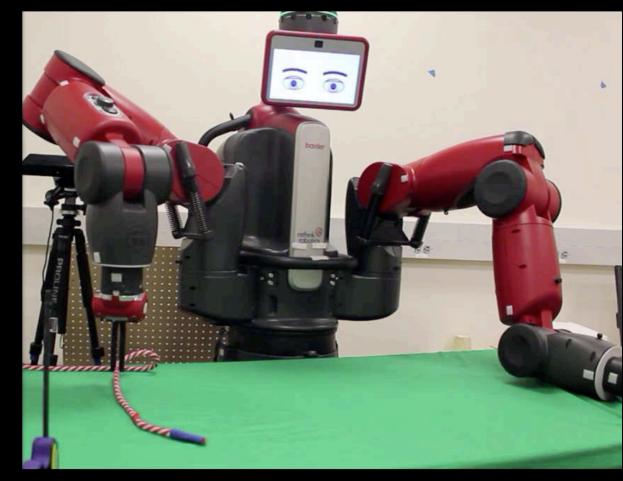
Lets not wait to find rewards

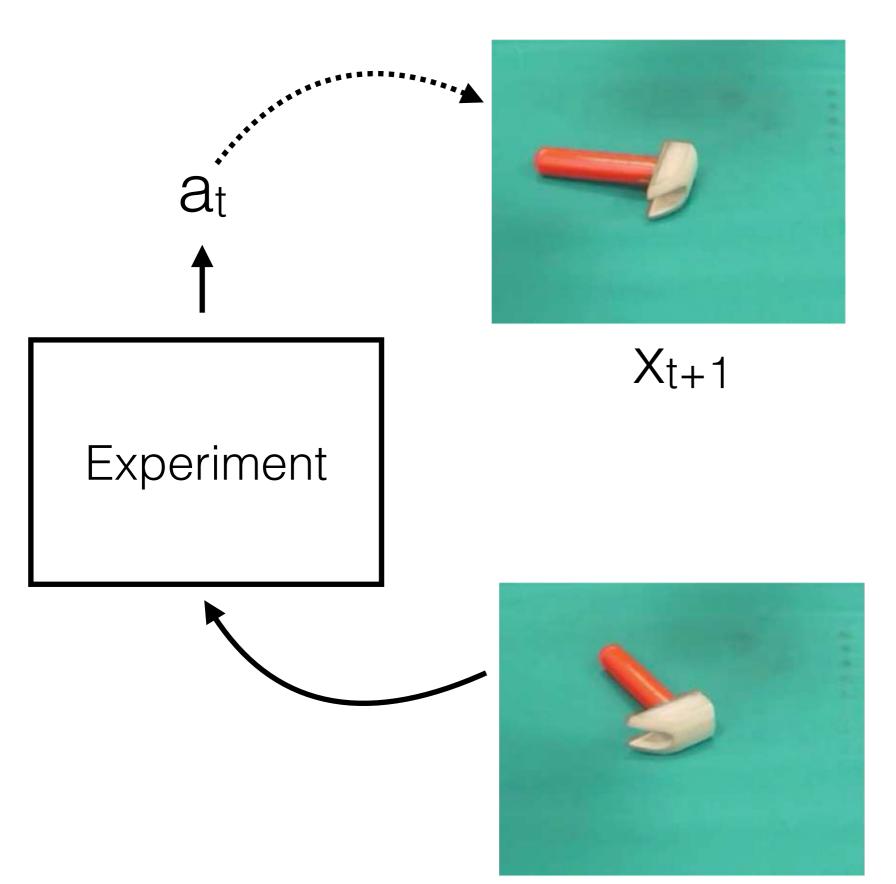
Task Curriculum

Learn skills in anticipation of future tasks!

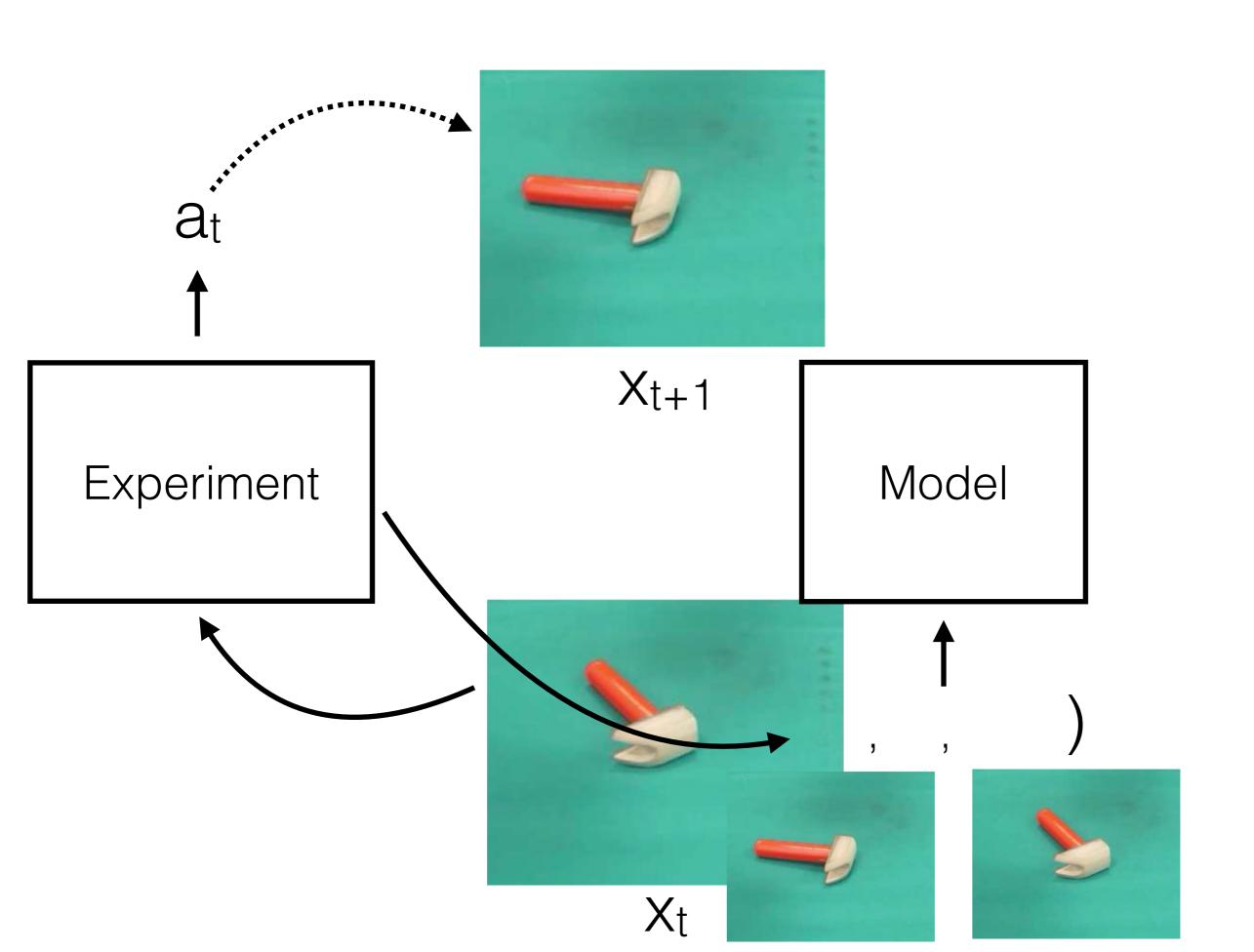


Robots Exploring





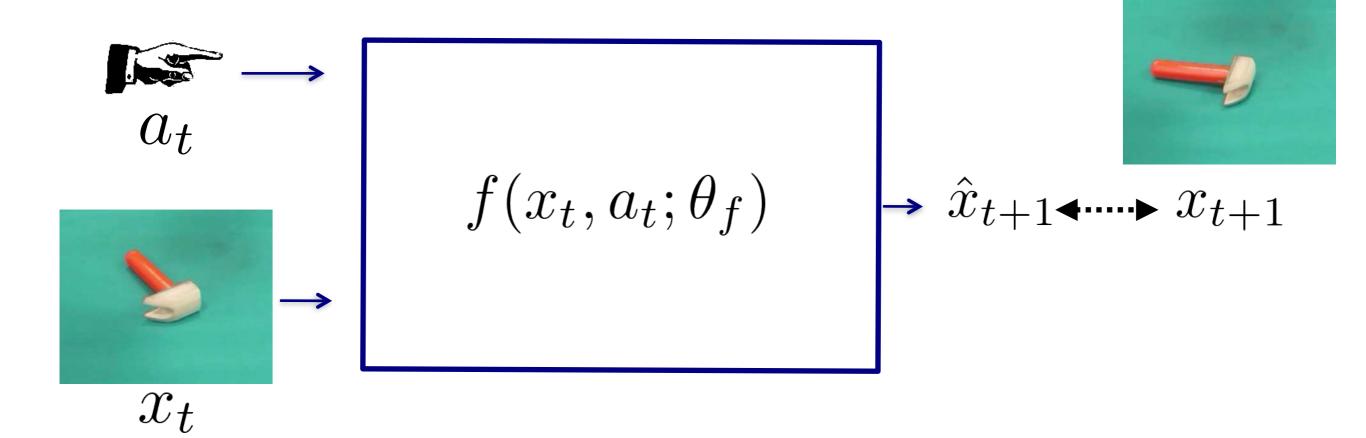
 \mathbf{X}_{t}



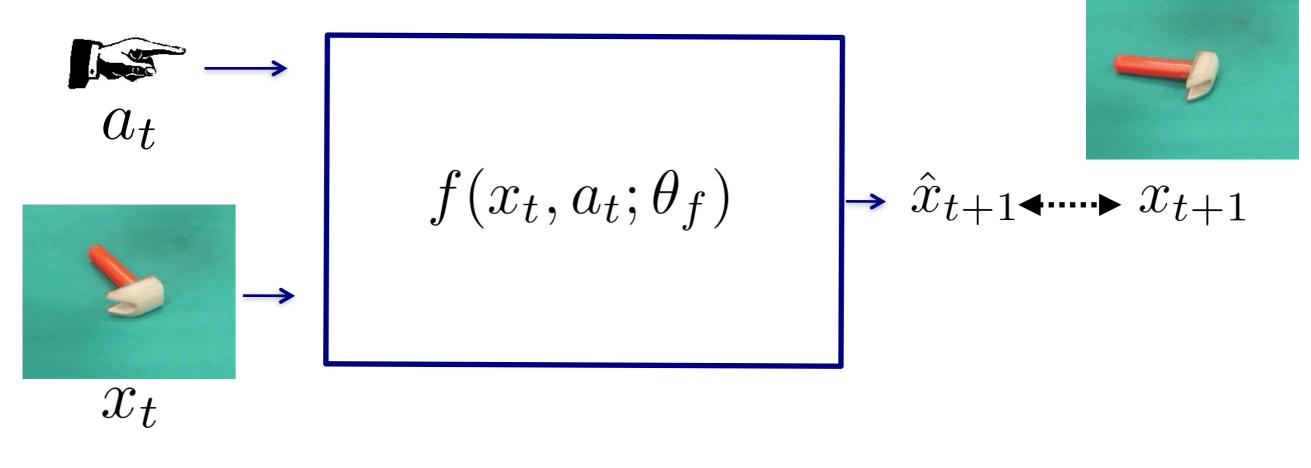
Useful Model: Predict what will happen next

 x_t

Useful Model: Predict what will happen next



Useful Model: Predict what will happen next



Forward model in pixel space

Petrovic et al., 2006

Goodfellow et al., 2014

Ranzato et al., 2014

Oh et al., 2015

Mathieu et al., 2015

Vondrick et al., 2015

Xue et al., 2016

Vondrick et al., 2016

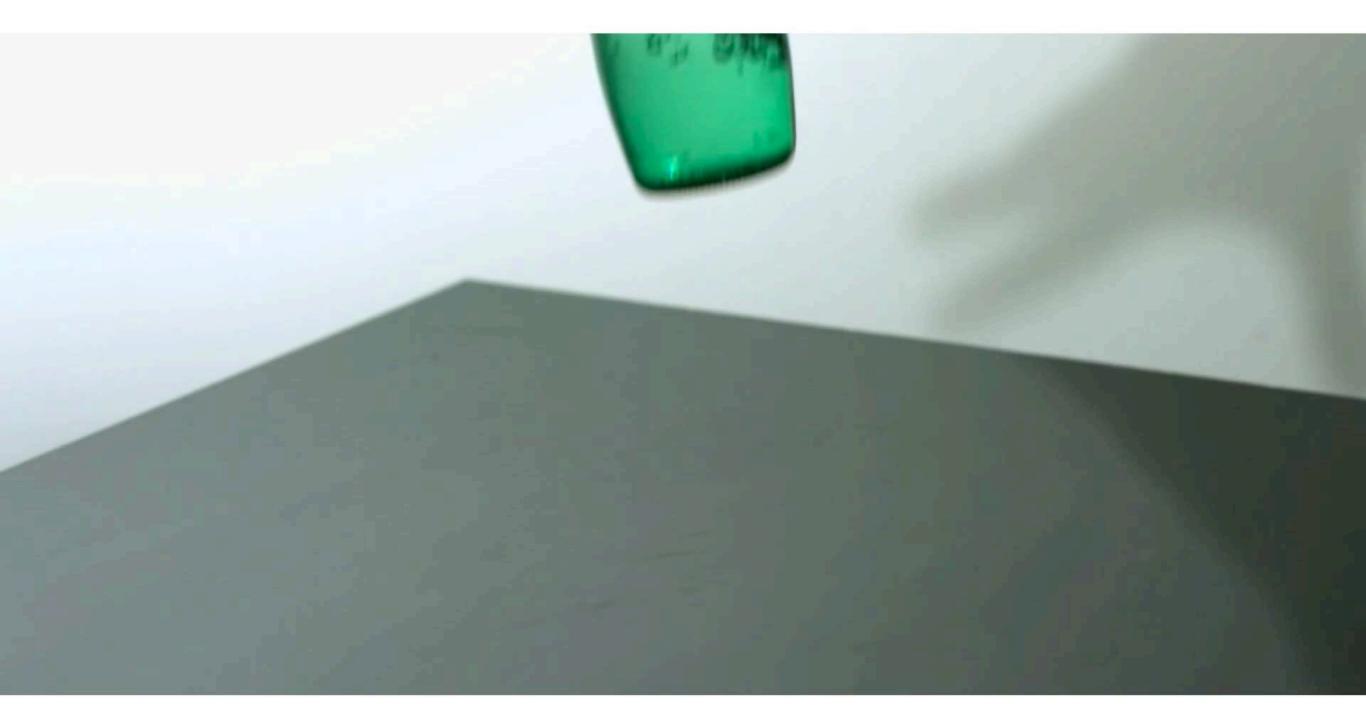
Finn et al., 2017

Not only hard,

but is this the right model to build ???

Consider a glass bottle

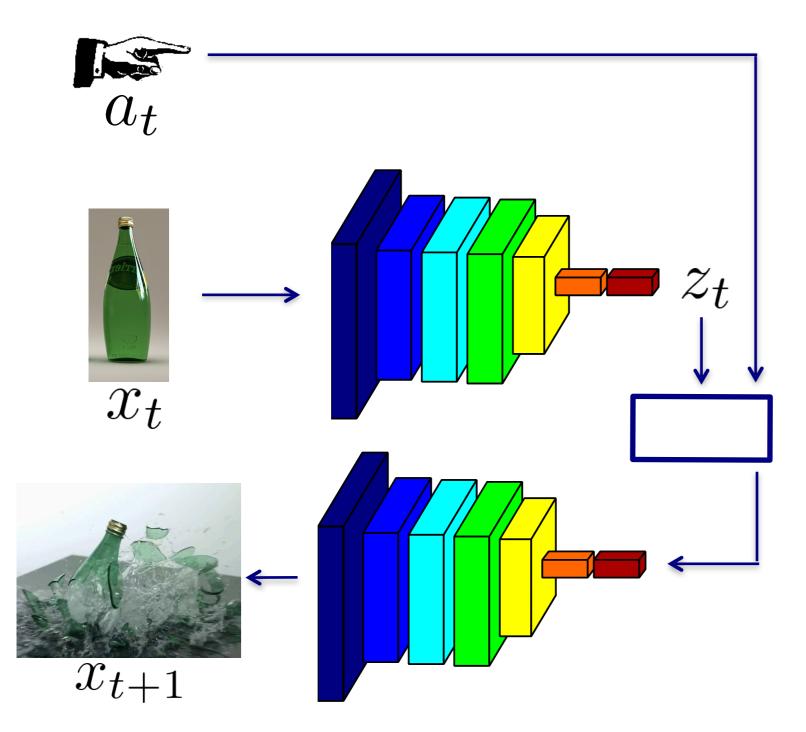
What will happen on dropping the bottle?



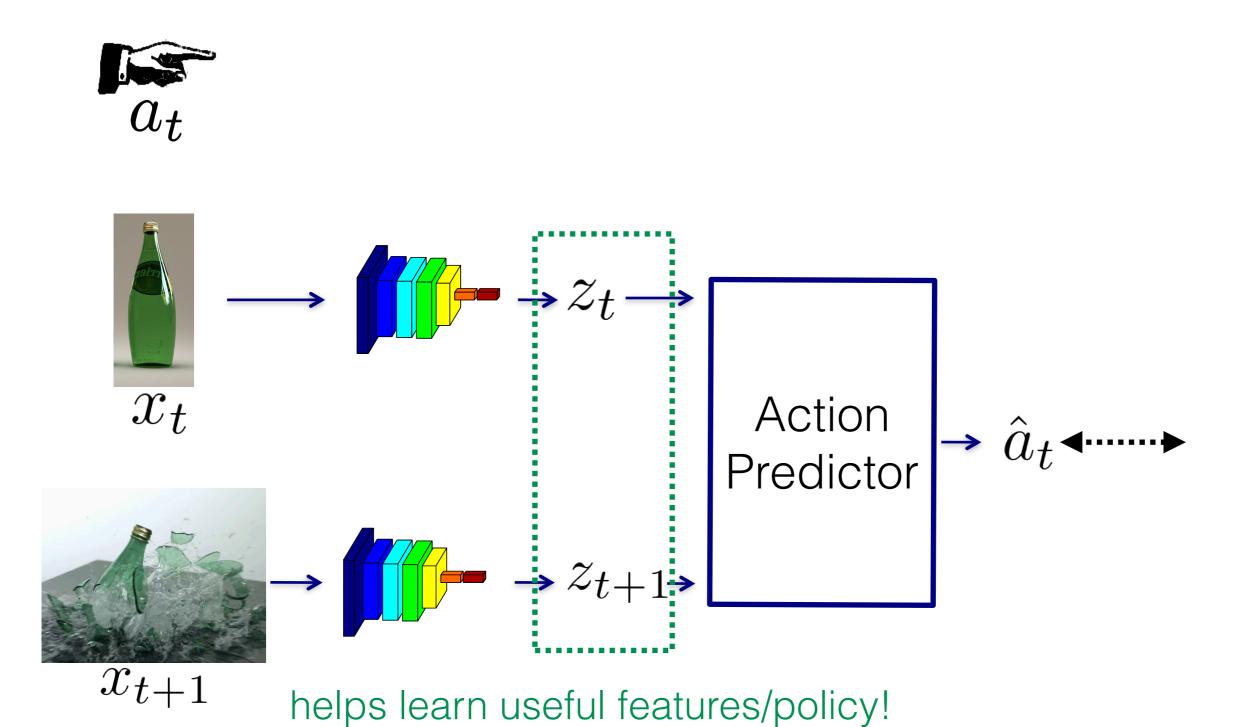
Different Feature Abstractions afford Different Predictions

Easy to predict: bottle breaks but Hard to predict: exact location of glass pieces

Instead of predicting pixels,

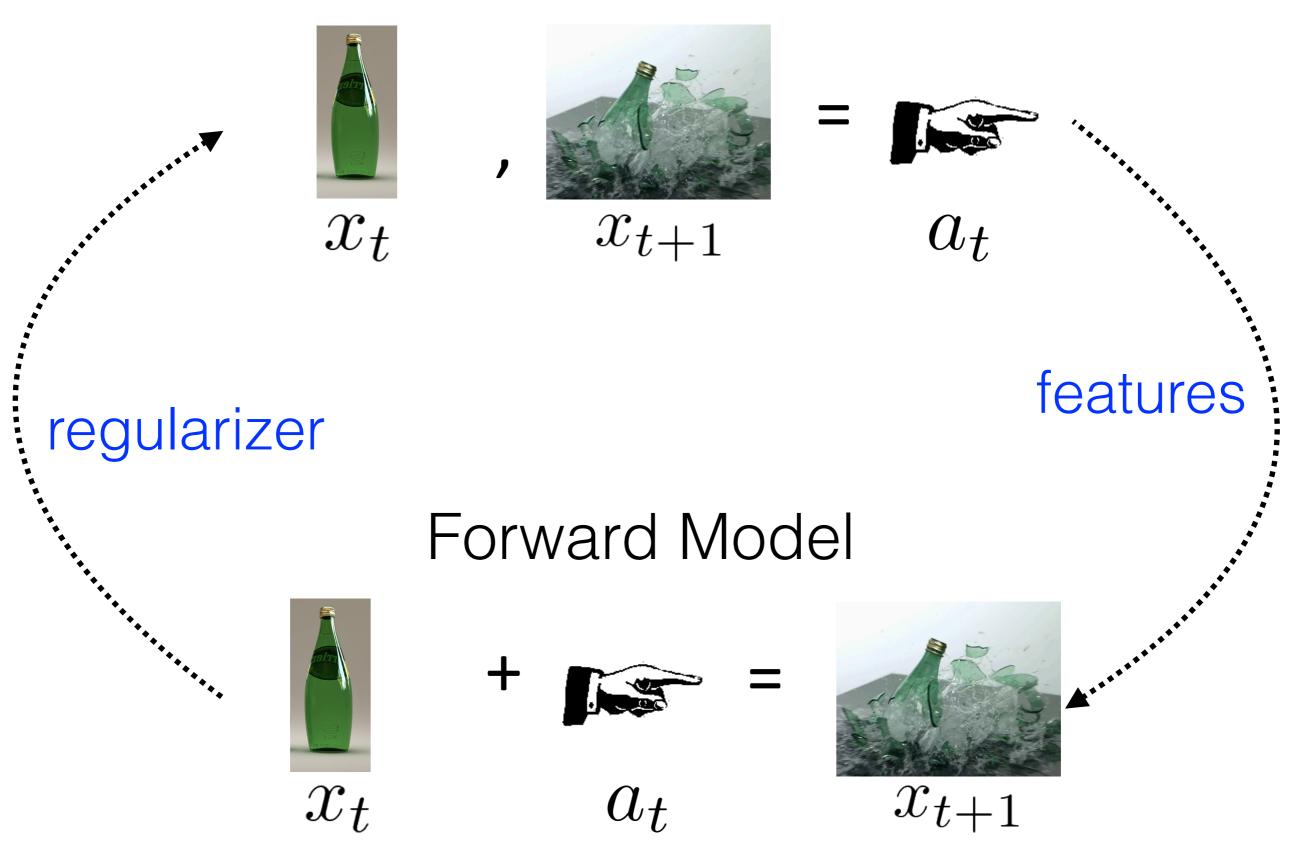


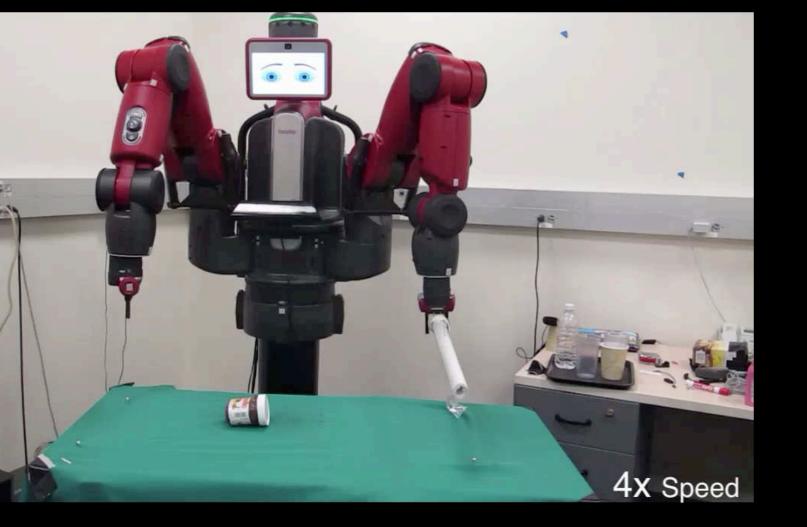
How about a different task?



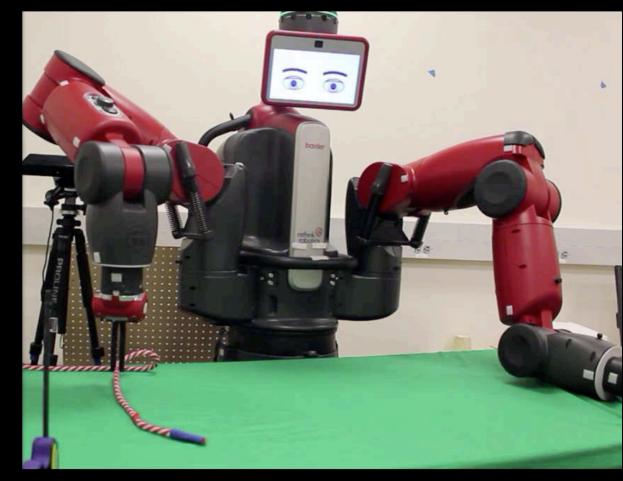
Inverse Model

Inverse Model





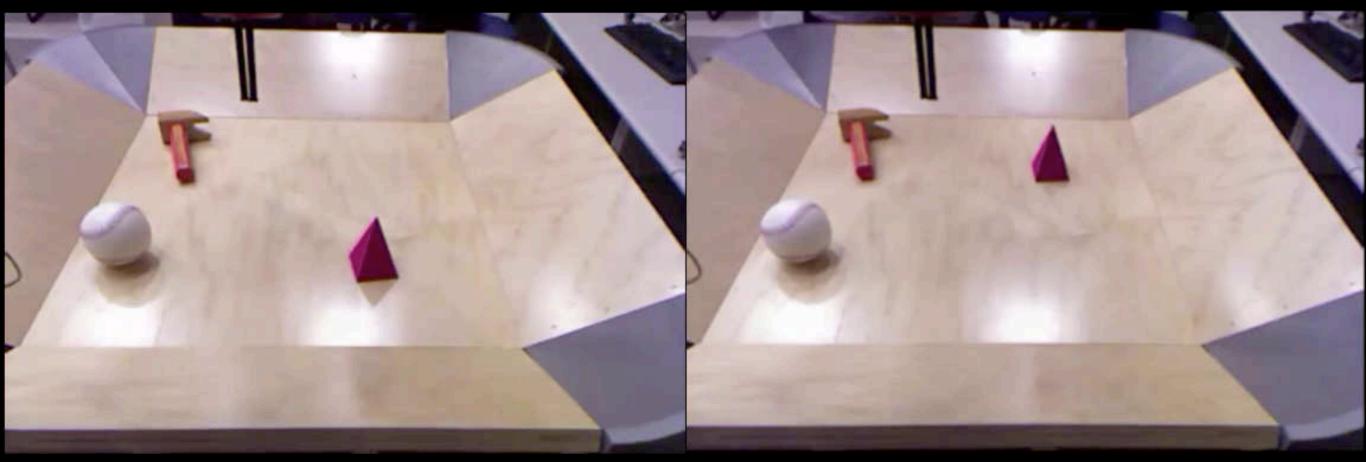
Robots Exploring



Pushing Objects

Current State

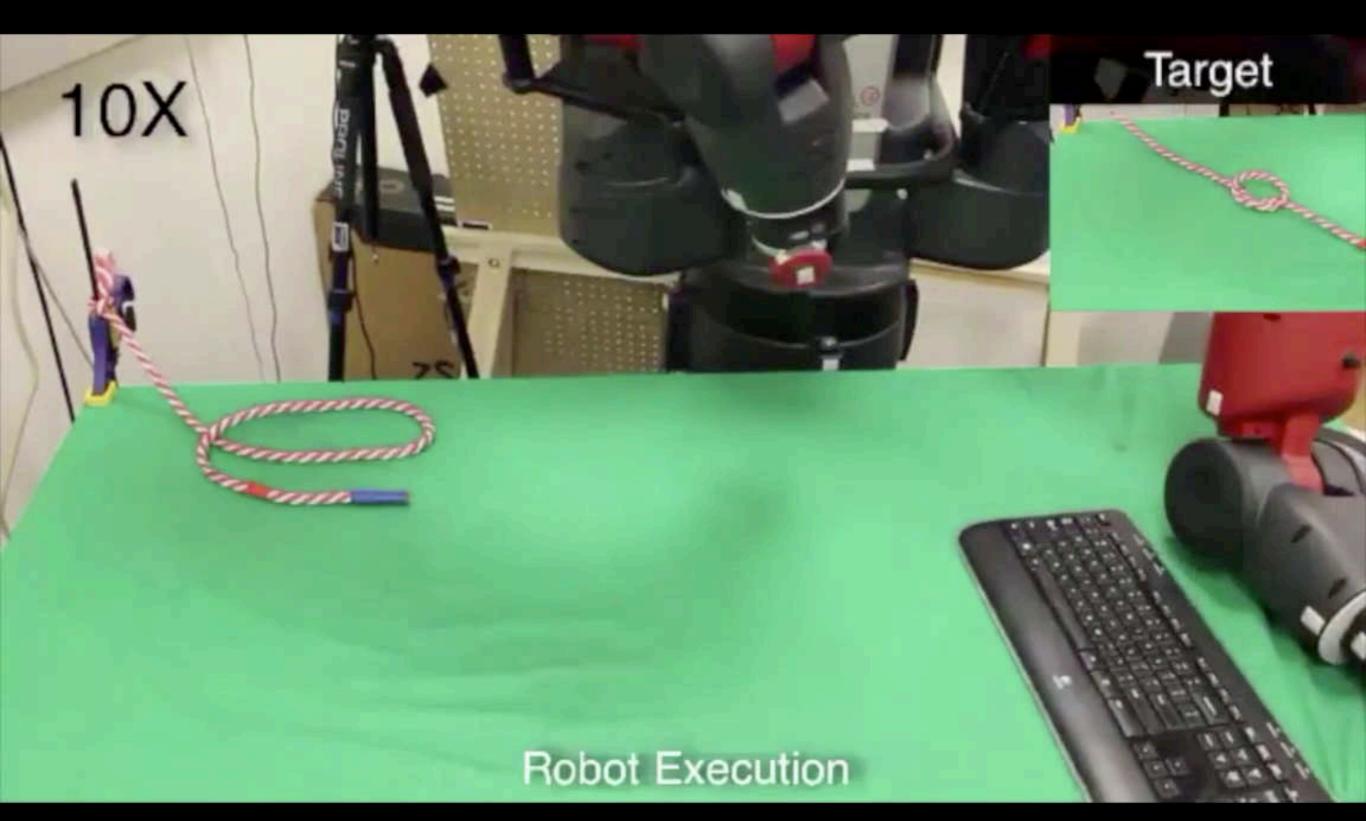
Goal State



Robot did not see any pyramids during training

Learning to Poke by Poking: Experiential Learning of Intuitive Physics, Agrawal et al., NIPS 2016

Rope Manipulation



robot gets only RGB images as input!

Combining Self-Supervision and Imitation for Vision Based Rope Manipulation, Ashvin Nair^{*}, Dian Chen^{*}, **Pulkit Agrawal**^{*}, Phillip Isola, Pieter Abbeel , Jitendra Malik, Sergey Levine, ICRA 2017 (*equal contribution)

Robot's Emergent Behavior

Current Image

Goal Image

Zero Shot Visual Imitation, Pathak D.*, Mahmoudieh P*., Luo M.*, **Agrawal P. *,** Shentu Y., Chen D., Shelhamer E., Malik J., Darrell, T. (ICLR 2018, *equal contribution)

What experiment to run? (exploration policy)

Model of how things work (intuitive physics, behavior)

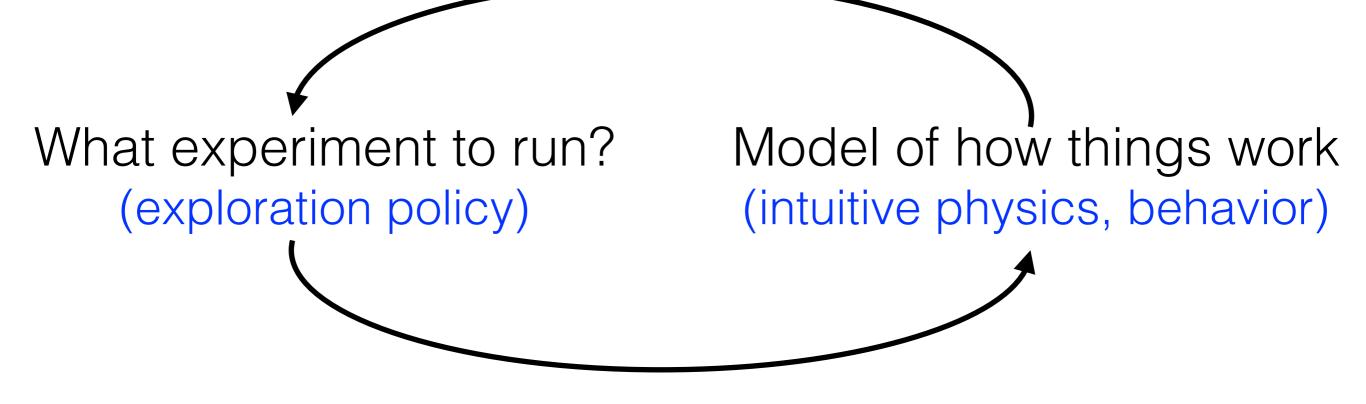
Issues with Reinforcement Learning

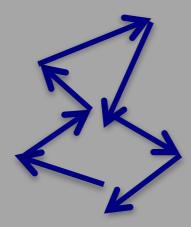
Where do .ewards con r from?

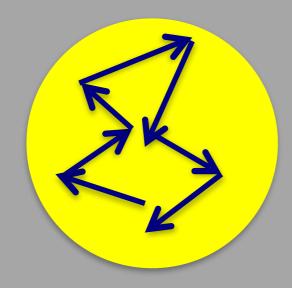
Demonstrations

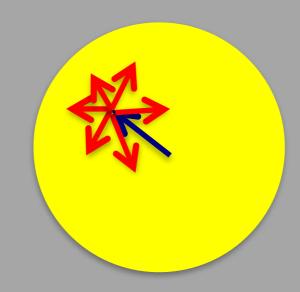
Task Curriculum

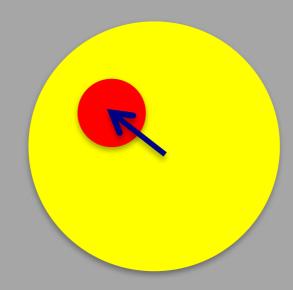
Self-Supervised Model Learning

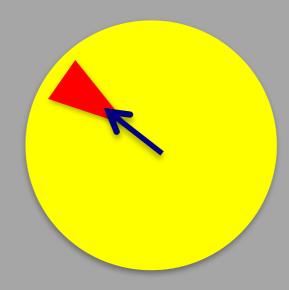


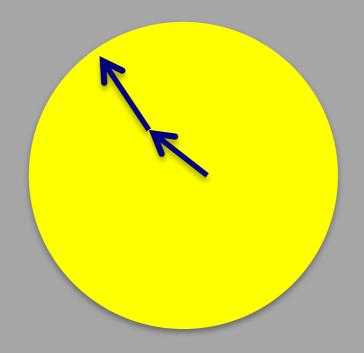


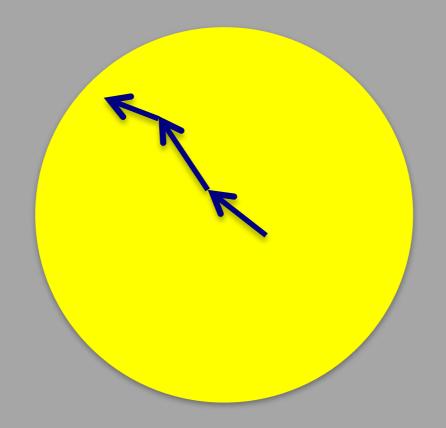


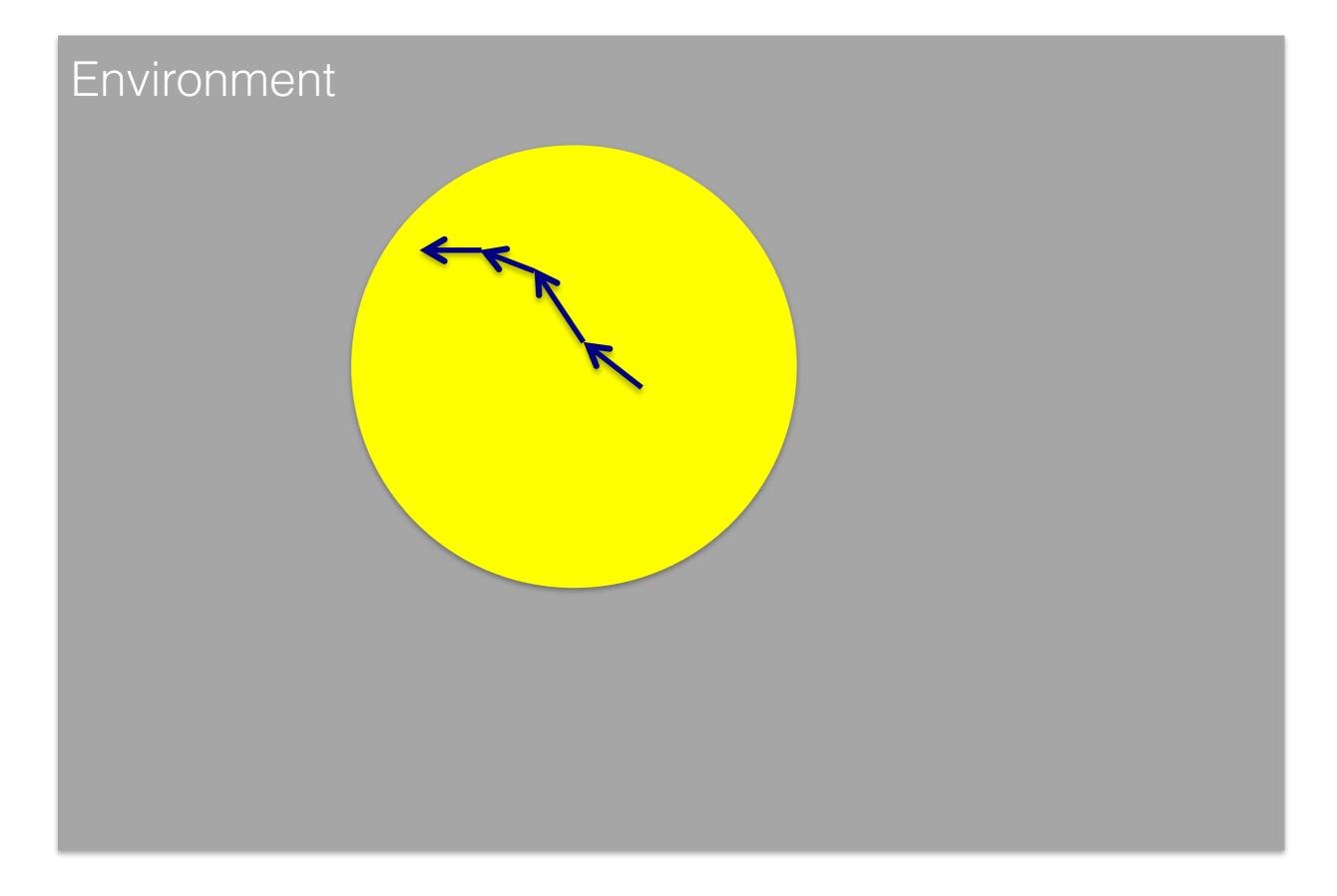


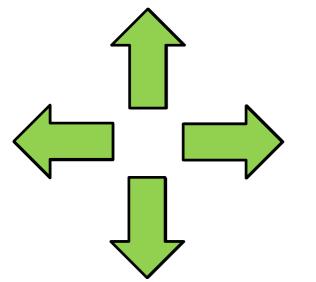






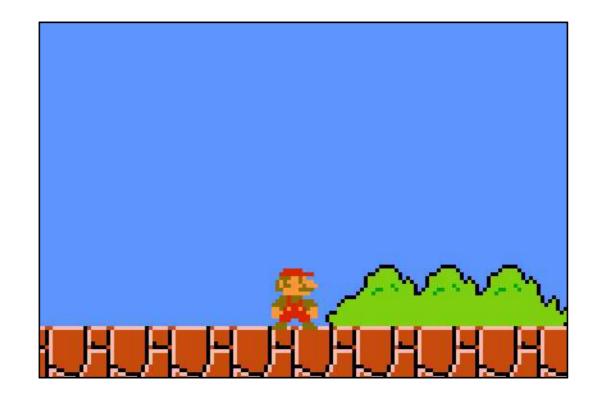




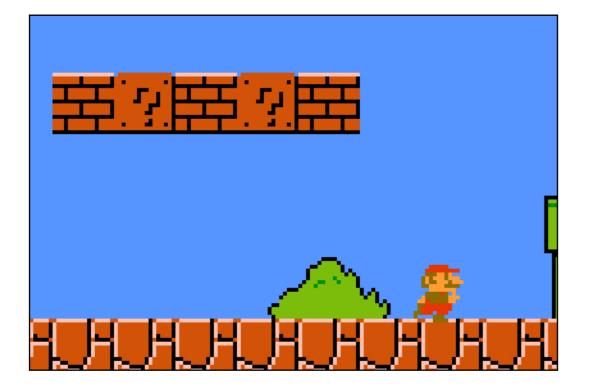


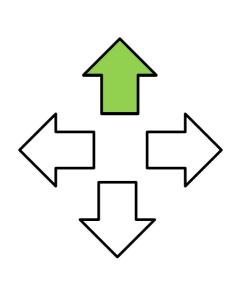
"Down" has no effect

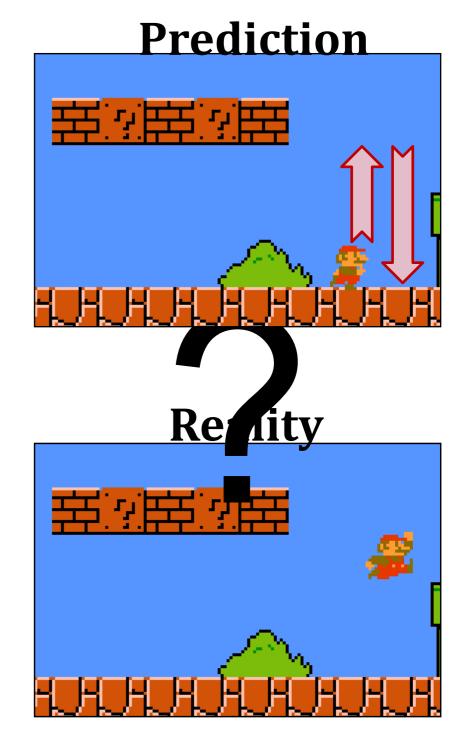
Action

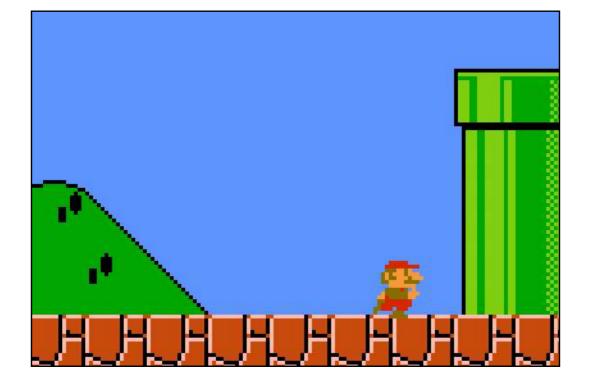


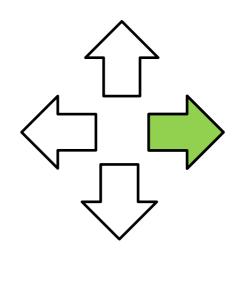
Observation

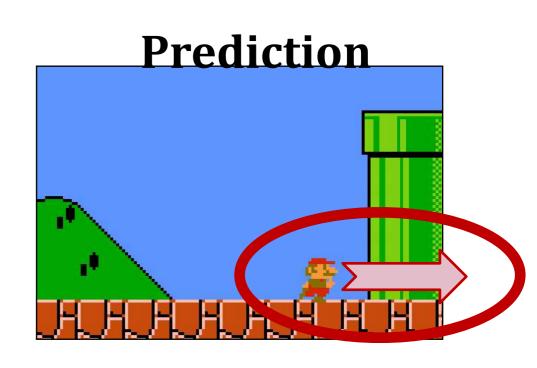


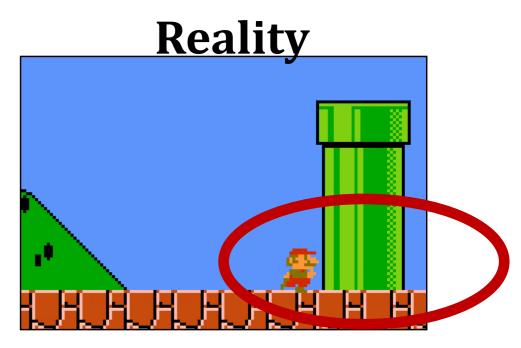


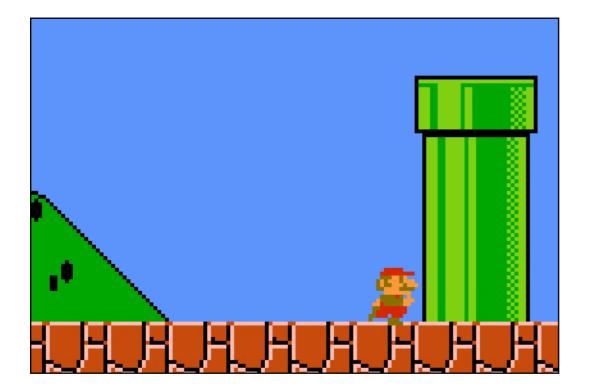


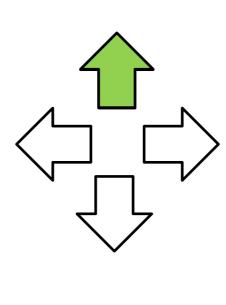


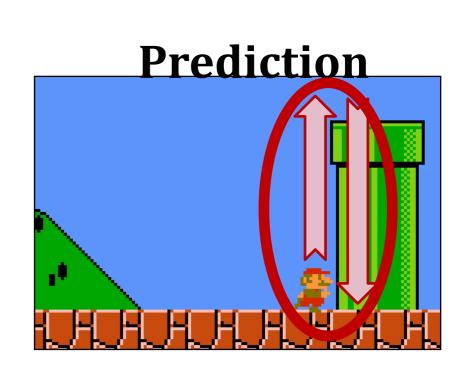


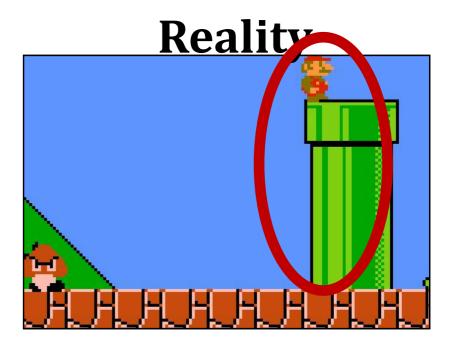


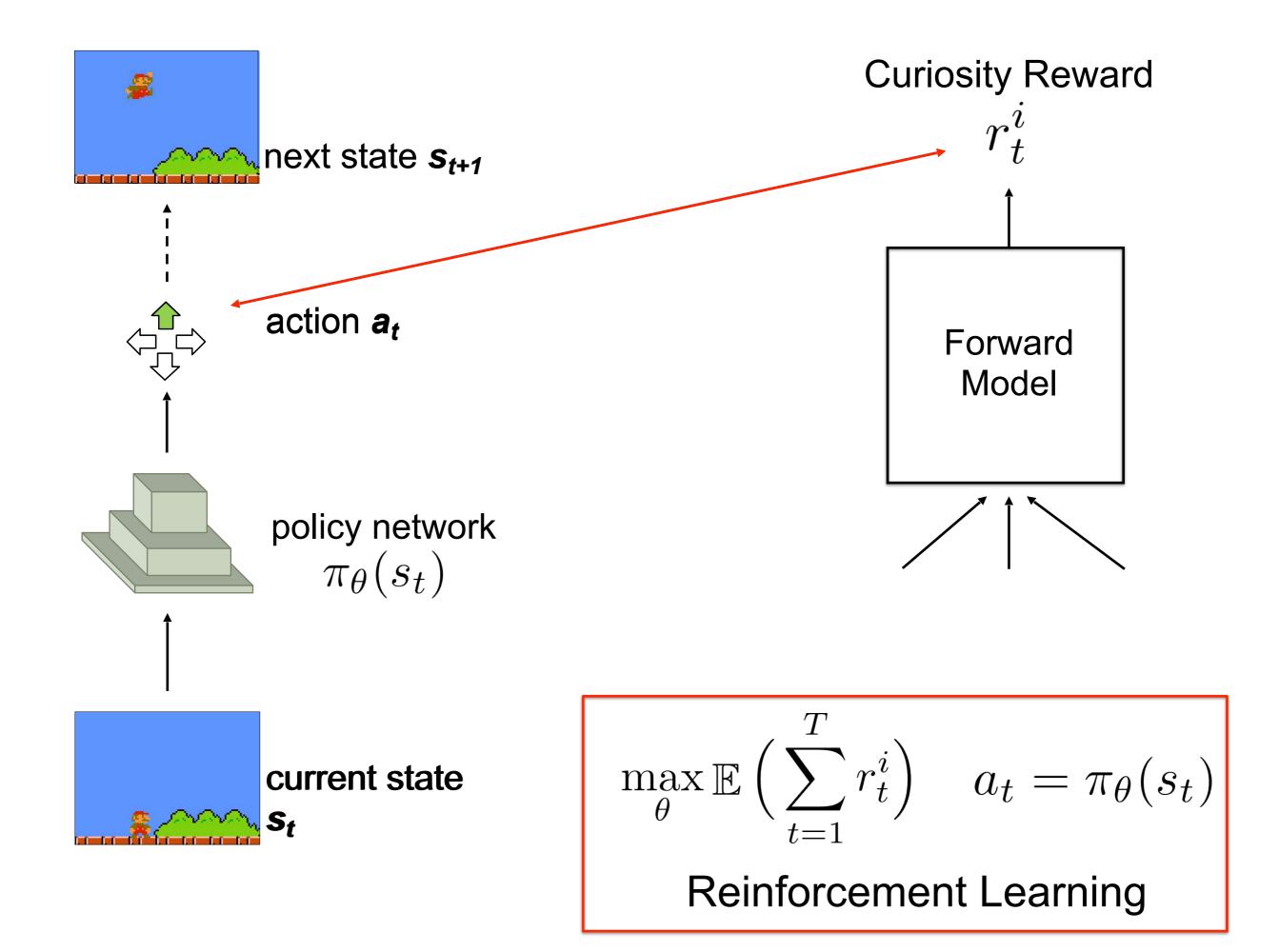




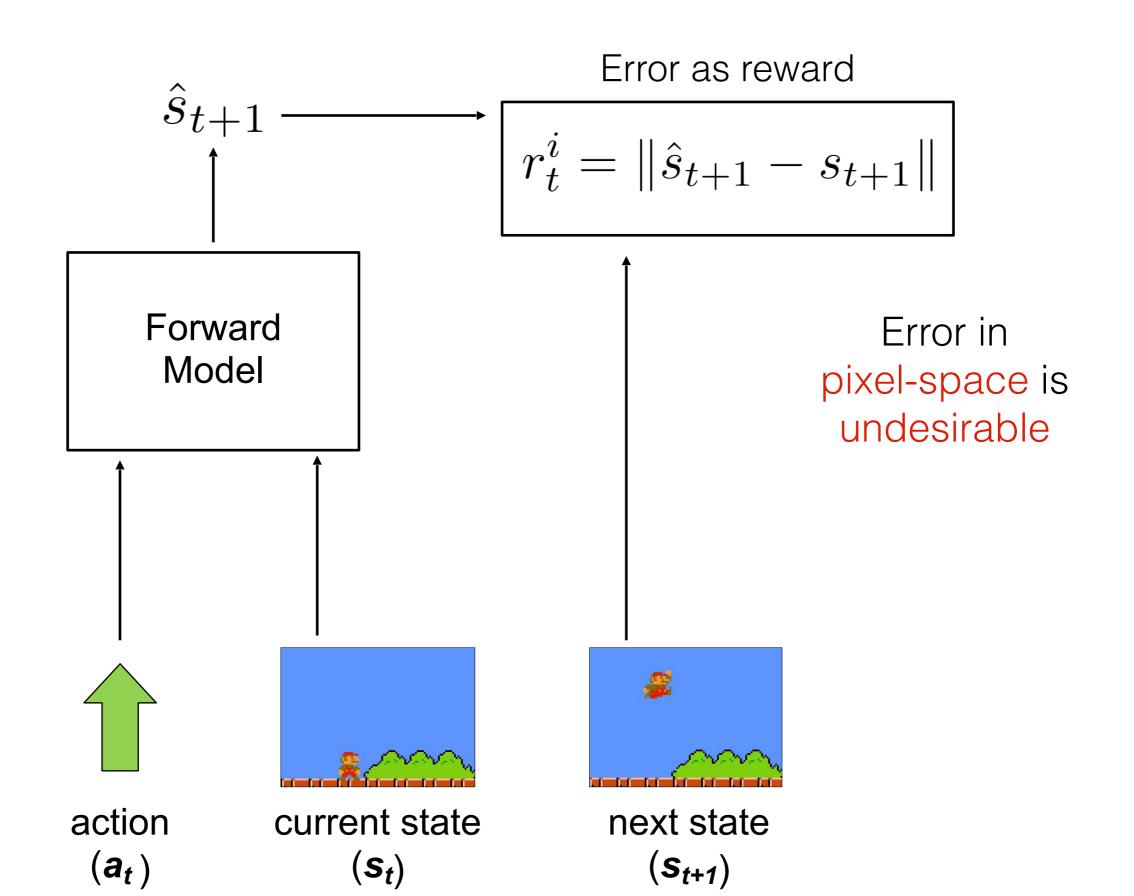








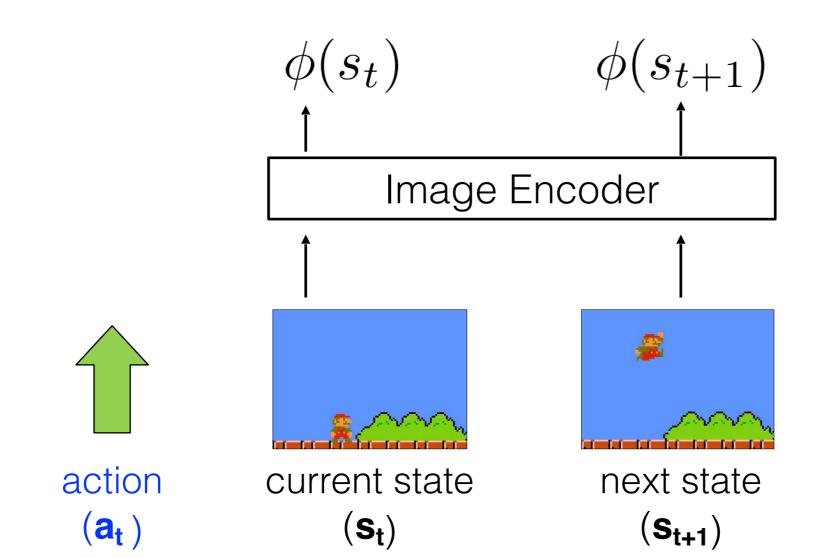
Prediction Error Reward



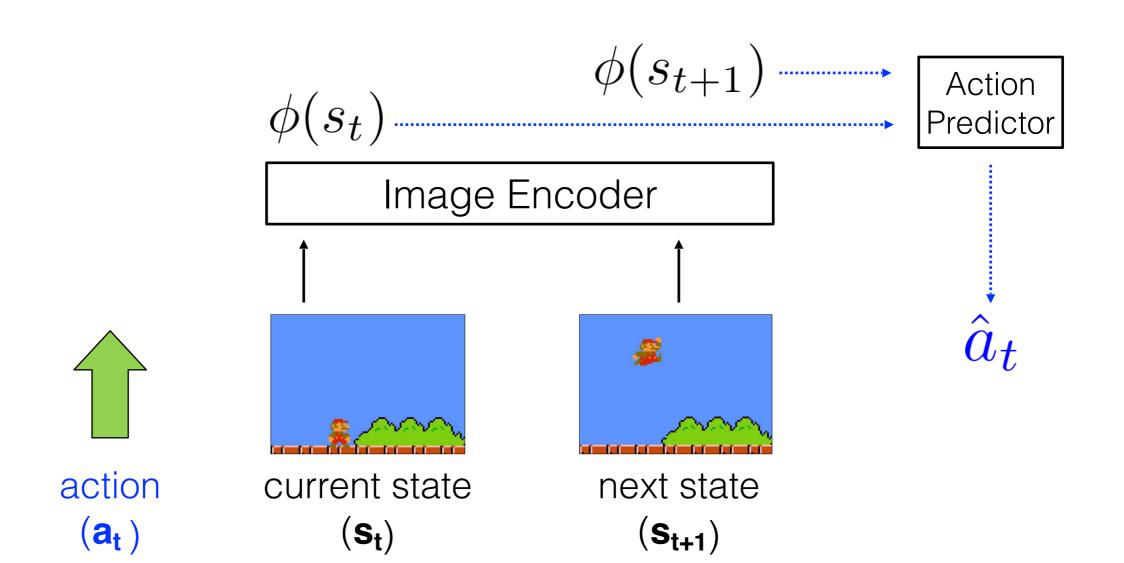
Only be curious about

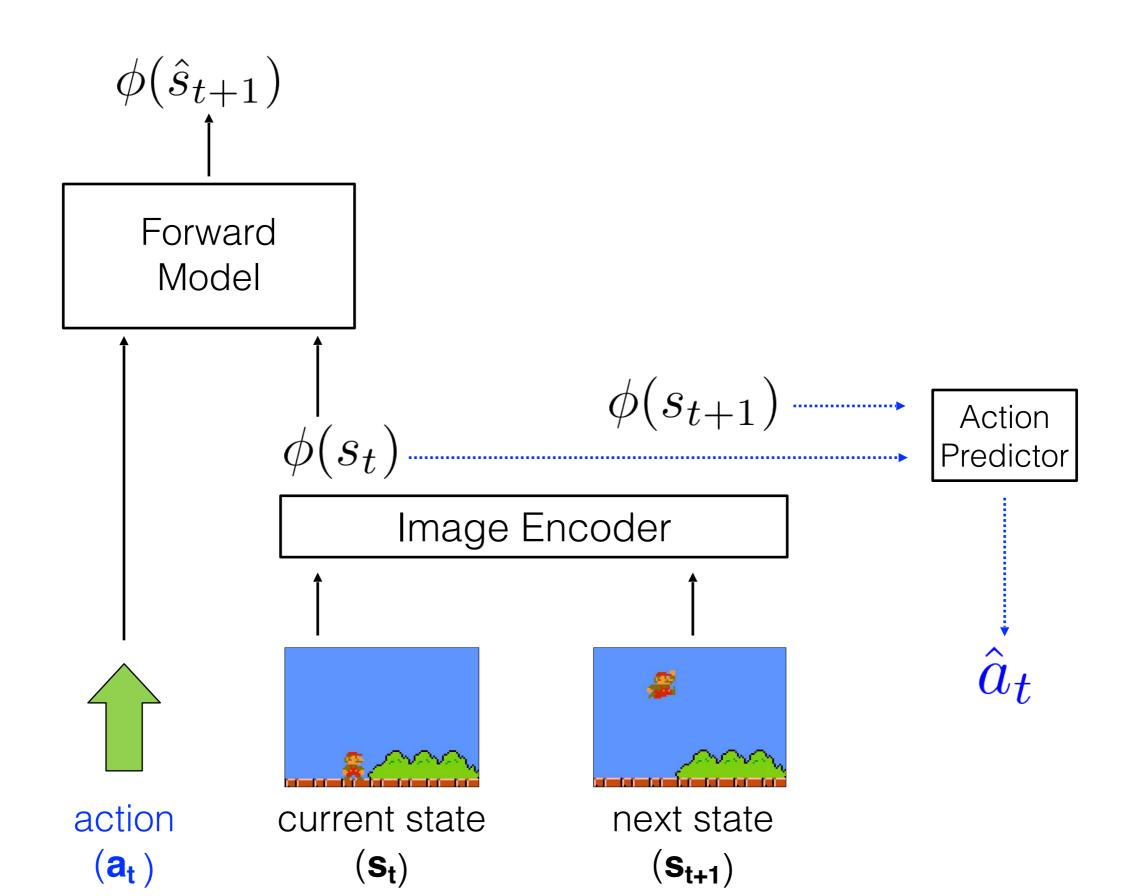
things that can

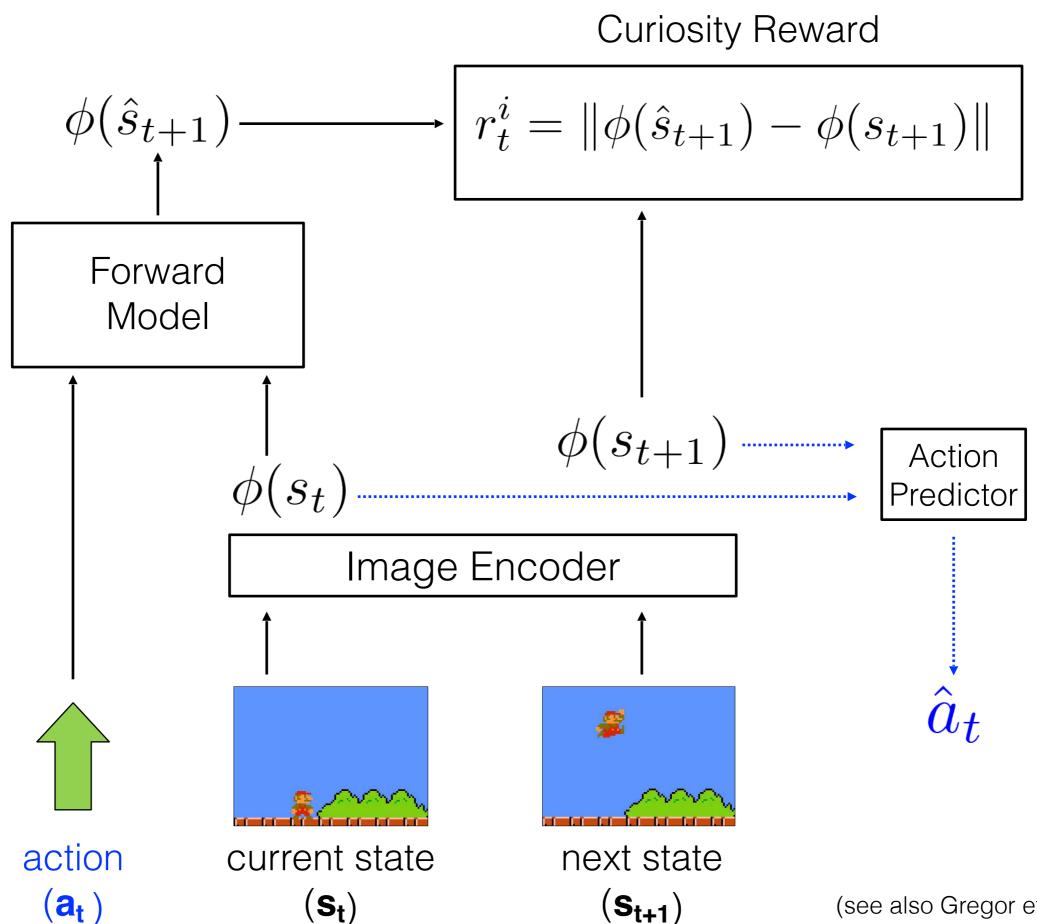
affect the agent



Inverse Model for learning feature representation

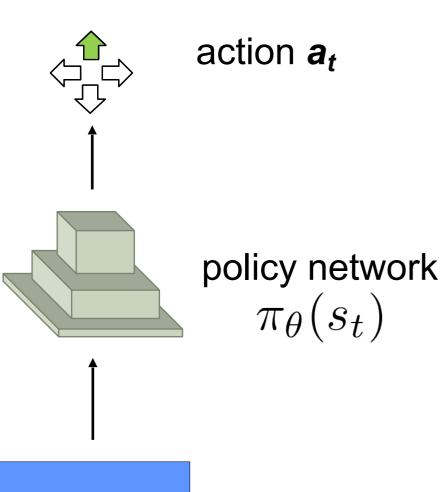






(see also Gregor et al. 2017)

Is this a good exploration policy?



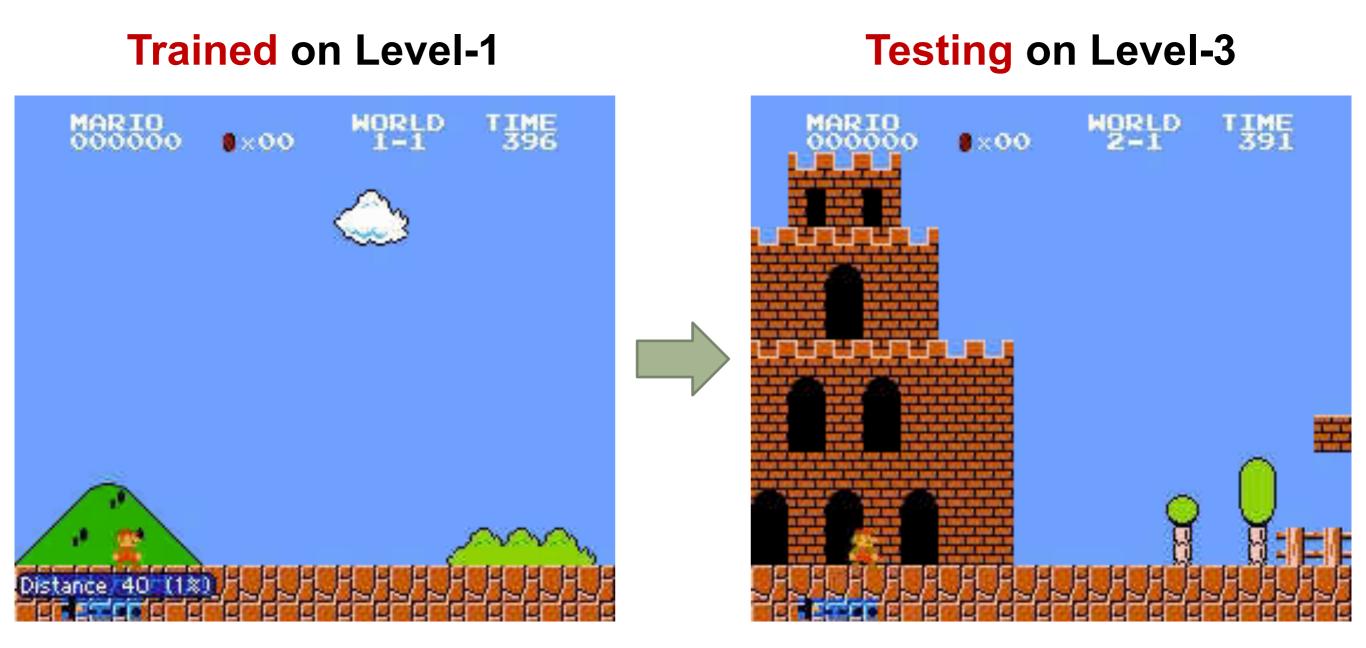
current state

Testing Exploration on the game of Mario

Emergent behaviors:

- Jumping enemies, pipes and pits
- Killing enemies

Does the exploration generalize?



Curious Agent in 3D Maze

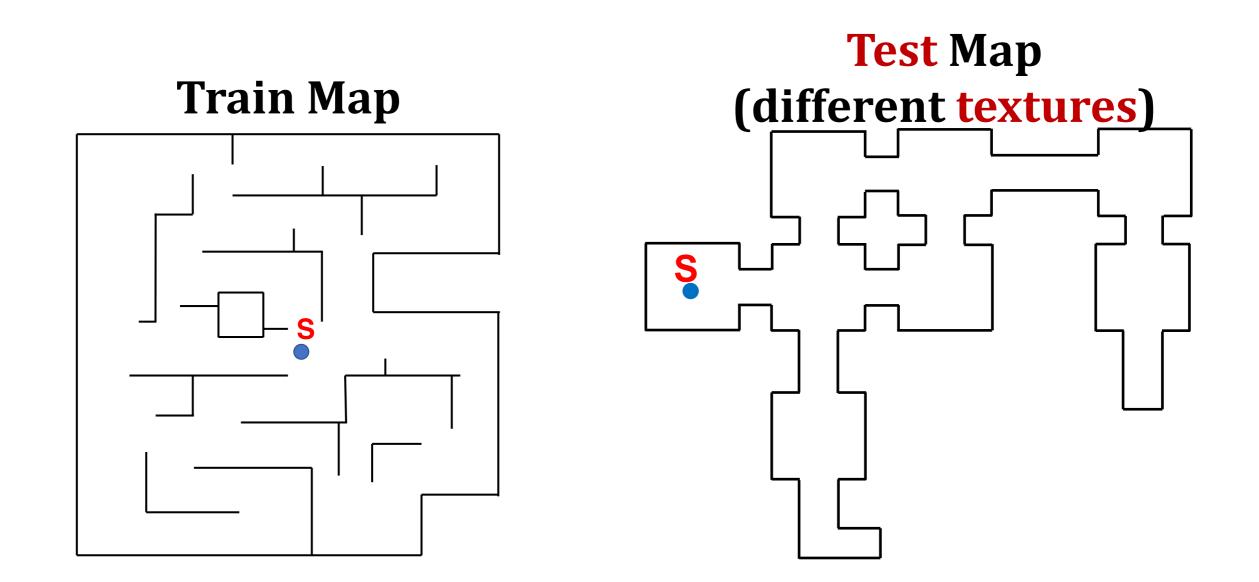
Agent's Observation

106

Curious Agent in 3D Maze

Our curious agent learns to move along the corridors without any extrinsic rewards

Does the exploration policy generalize?



Note: Agent does not have access to Map

Does the exploration policy generalize?

Train Map m ALC: NO.

No Finetuning Test Map (different textures)

Note: Agent does not have access to Map

Curiosity driven Exploration by Self-Supervised Prediction, Pathak D., Agrawal P., Efros A., Darrell T., ICML 2017

Robustness to irrelevant parts

Feature space Curiosity (Ours)

Pixel space Curiosity

Robustness to uncontrollable parts of environment (noise)

Curiosity driven Exploration by Self-Supervised Prediction, Pathak D., Agrawal P., Efros A., Darrell T., ICML 2017

Issues with Reinforcement Learning

Where do . ewards con r from?

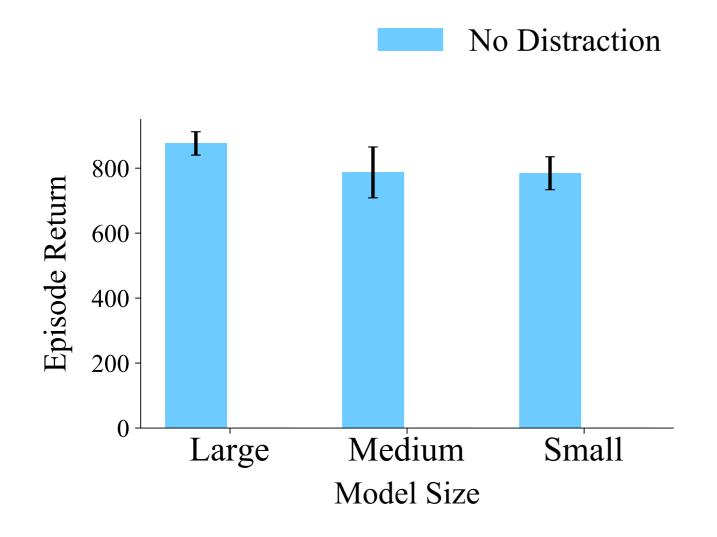
Demonstrations

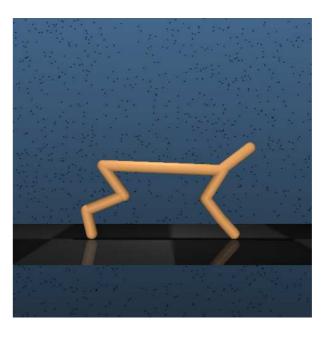
Task Curriculum

Exploration

Self-Supervised Model Learning

Learning Models from Natural Visual Data is Hard

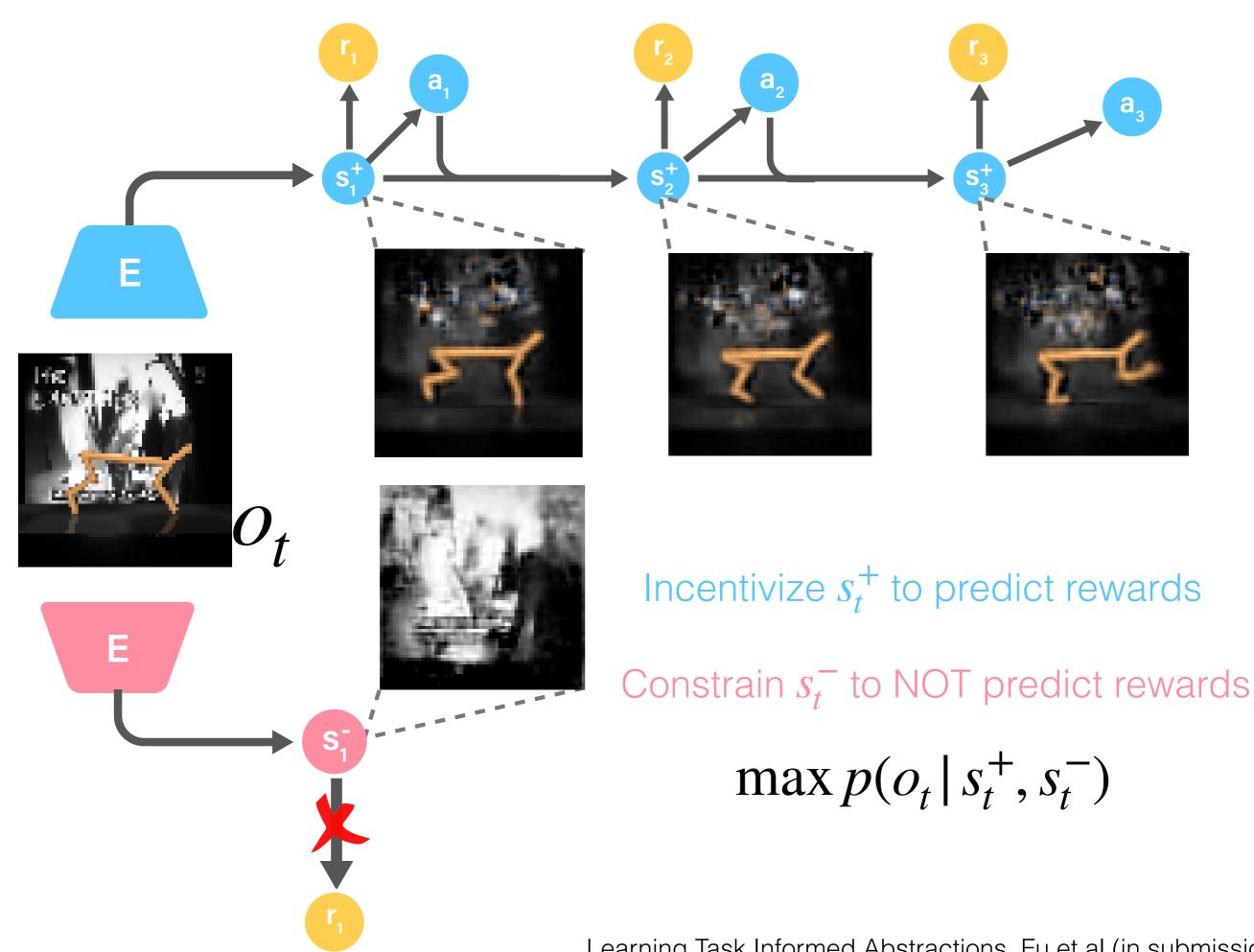




The second second second second second second

Most model capacity is consumed by distractors

Learning Task Informed Abstractions, Fu et al (in submission)



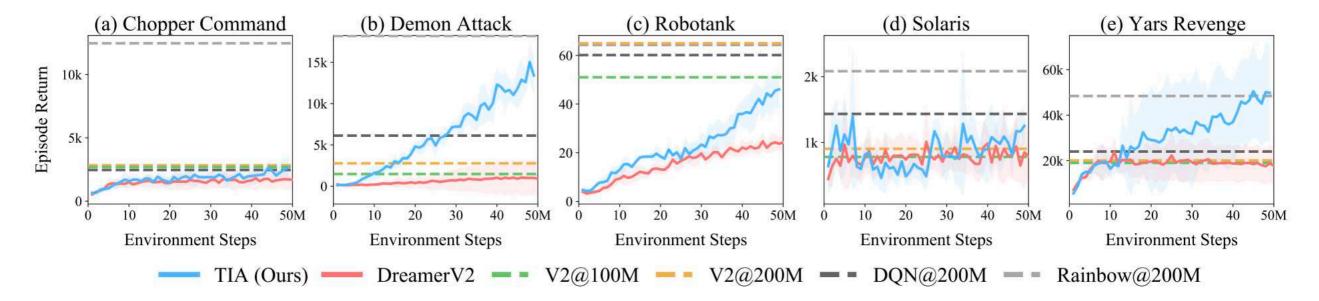
Learning Task Informed Abstractions, Fu et al (in submission)

Results Teaser

Raw Observation

Dreamer (best prior work)

Ours



Learning Task Informed Abstractions, Fu et al (in submission)

Issues with Reinforcement Learning

Where do . ewards con r from?

Demonstrations

Task Curriculum

Self-Supervised Model Learning

Exploration

Learning Task-Relevant Models

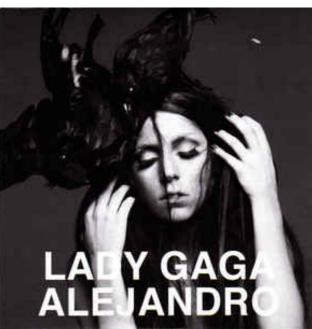
Exploration has benefits, but is undesirable at times!

Imagine your favorite playlist

	Spotify Unlimited	
Q haydn dorati		🌲 1 😩 timj
	# SONG	Ö 单
Browse	01	
O Discover	1 + Symphony in D, HJ No.1: 1. Presto - Antal Doráti	
•) Radio	2 + Symphony in D, HJ No.1: 2. Andante - Antal Doráti	5:40
Top Lists		
Messages	3 + Symphony in D, HJ No.1: 3. Finale - Presto - Antal Doráti	
Play Queue	4 + Symphony in C, HJ No.2: 1. Allegro - Antal Doráti	
	5 + Symphony in C, H.I No.2: 2. Andante - Antal Doráti	
App Finder ShareMyPlaylists	6 + Symphony in C, HJ No.2: 3. Finale - Presto - Antal Doráti	
	7 + Symphony in G major, HJ No.3: 1. Allegro - Antal Doráti	
	8 + Symphony in G major, HJ No.3: 2. Andante moderato - Antal Doráti	
	9 + Symphony in G major, HJ No.3: 3. Menuet & Trio - Antal Doráti	
	10 + Symphony in G major, HJ No.3: 4. Finale - Alla breve - Antal Doráti	
	11 + Symphony in D, HJ No.4: 1. Presto - Antal Doráti	
AYON	12 + Symphony in D, HJ No.4: 2. Andante - Antal Doráti	3:49
YMPHONIES	13 + Symphony in D, HJ No.4: 3. Finale - Tempo di Menuetto - Antal Doráti	
nphony in D, H.I No.1: 1. Presto	14 + Symphony in A, H.I No.5: 1. Adagio ma non troppo - Antal Doráti	
nphony in D, H.I No.1: 1. Presto - harmonia Hungarica, Antal Doráti	+ 15 + Symphony in A, H.I No.5: 2. Allegro - Antal Doráti	
(►) H ● 40 0:15	-	457 % 0

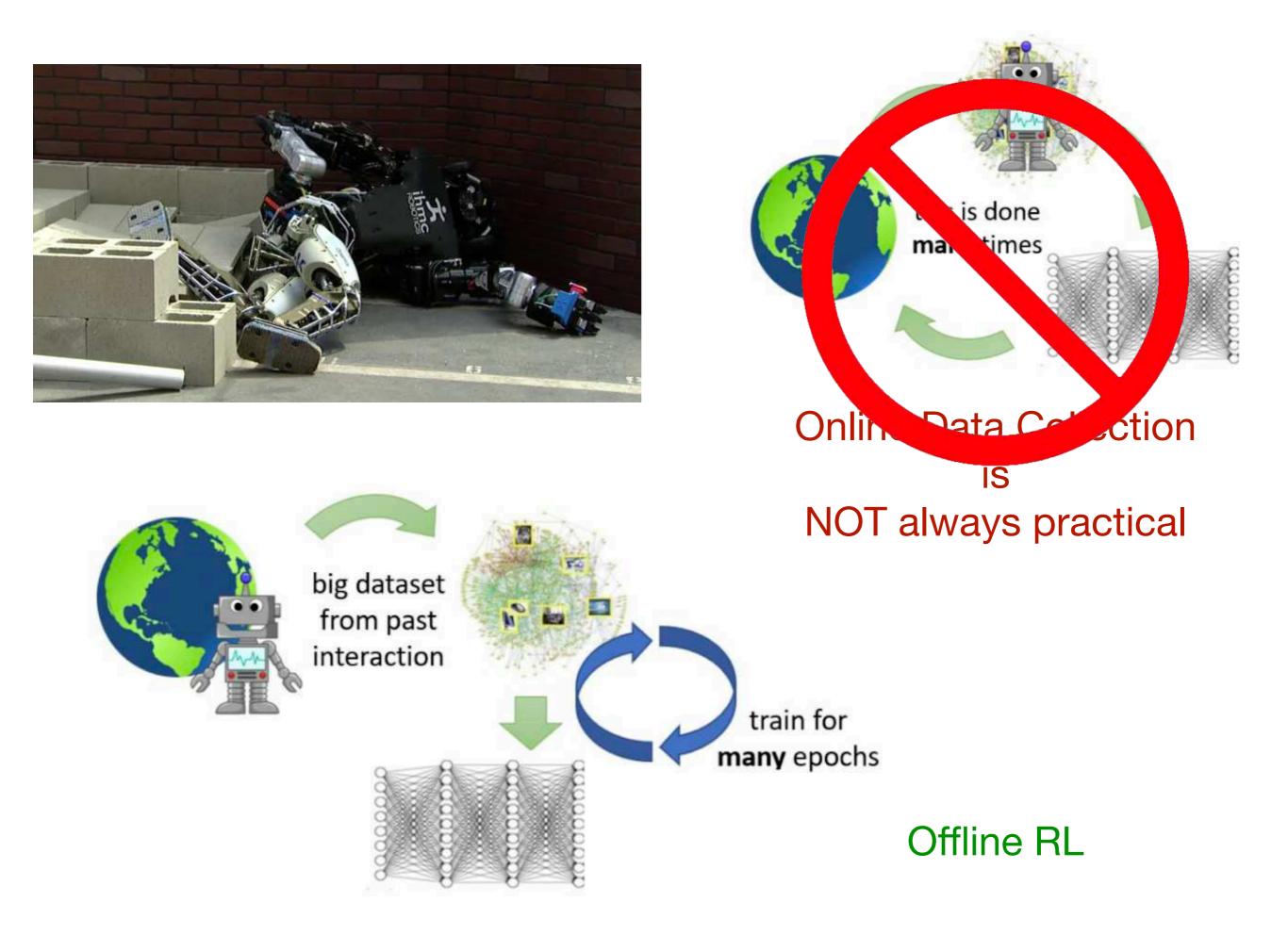
(they want you hooked)

Explore by Suggesting other music

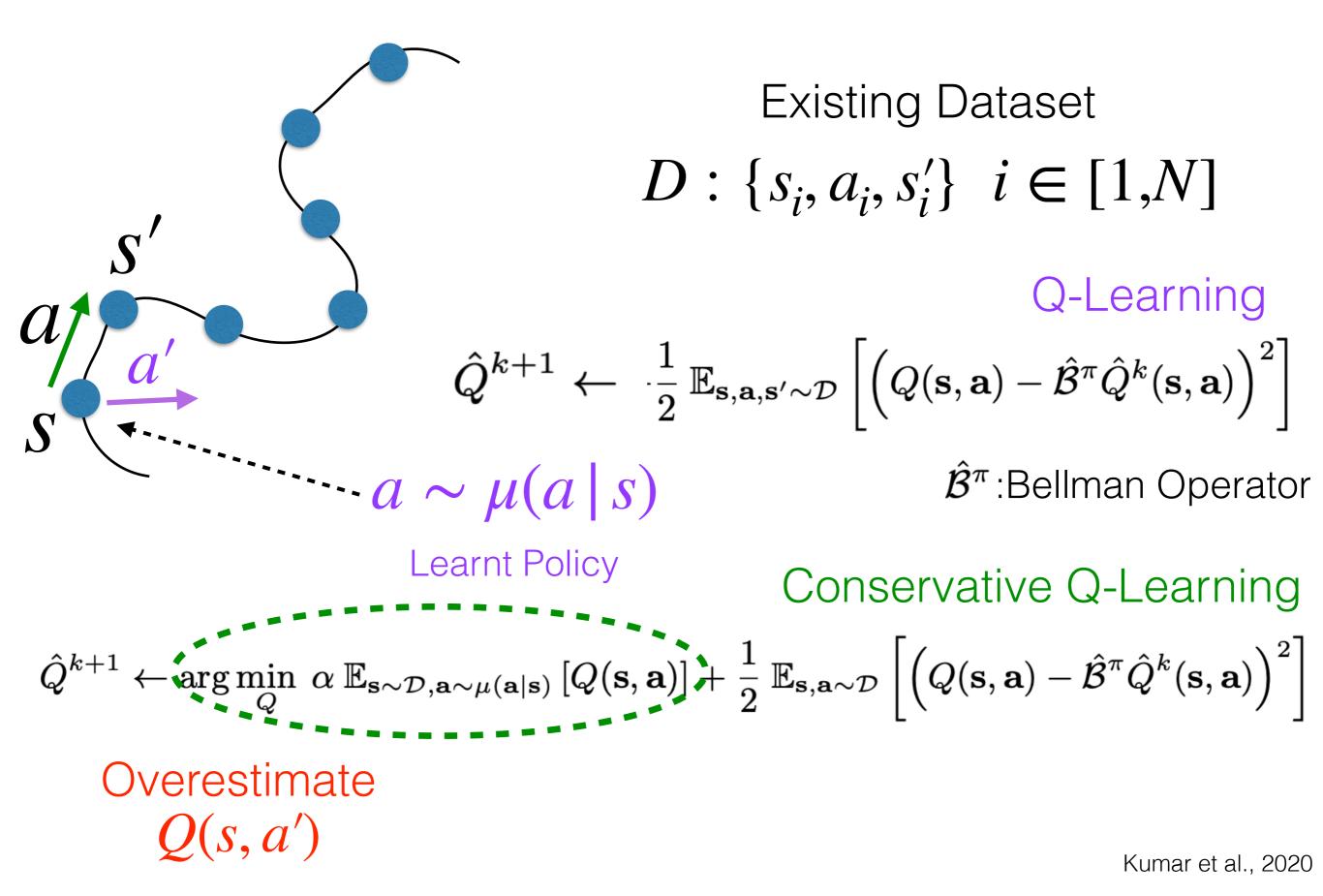


Imagine your favorite playlist

Sometimes Exploration can be very costly!



Conservative Q-Learning for Offline RL



Improving Offline Learning with Action Primitives

Improving Offline Learning with Action Primitives



Antmaze medium

Antmaze large

kitchen

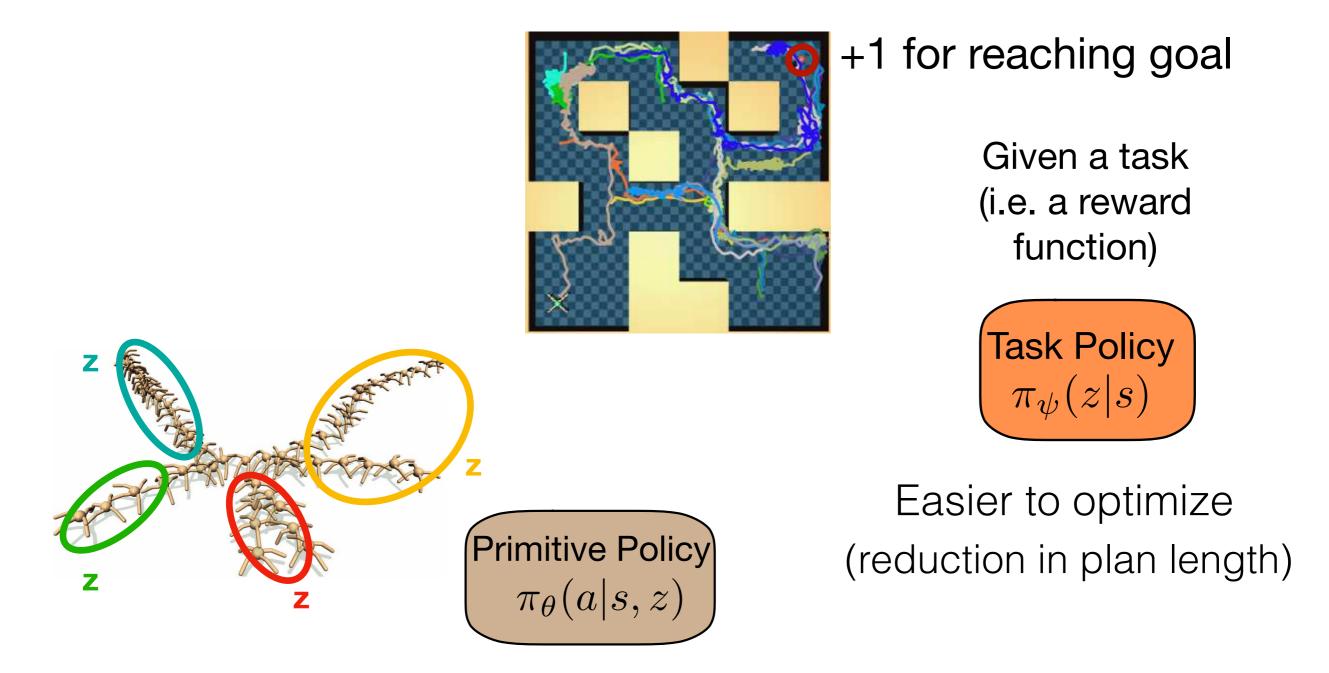
State (joint angles + xy pose): 29 dim

Action (joint torques): 8 dim

State (joint angles + xy pose): 60 dim

Action (joint torques): 9 dim

OPAL:Offline Primitive Discovery for Accelerating RL



Cluster actions to learn "skills" (or action primitives)

Ajay et al., ICLR 2021

Results

Environment	BC	BEAR	EMAQ	CQL	CQL+OPAL (ours)
antmaze medium (diverse)	0.0	8.0	0.0	53.7 ± 6.1	$\textbf{81.1} \pm \textbf{3.1}$
antmaze large (diverse)	0.0	0.0	0.0	14.9 ± 3.2	$\textbf{70.3} \pm \textbf{2.9}$
kitchen mixed	47.5	47.2	$\textbf{70.8} \pm \textbf{2.3}$	52.4 ± 2.5	$\textbf{69.3} \pm \textbf{2.7}$
kitchen partial	33.8	13.1	74.6 ± 0.6	50.1 ± 1.0	$\textbf{80.2} \pm \textbf{2.4}$

CQL: Conservative Q Learning (Kumar et al, 2020)

BC: Behavioral Cloning

BEAR: Bootstrapping error accumulation reduction (Kumar et al, 2019)

EMAQ: Expected Max-Q Learning (Ghasemipour et al, 2020)

Issues with Reinforcement Learning

Where do . ewards con r from?

Demonstrations

Task Curriculum

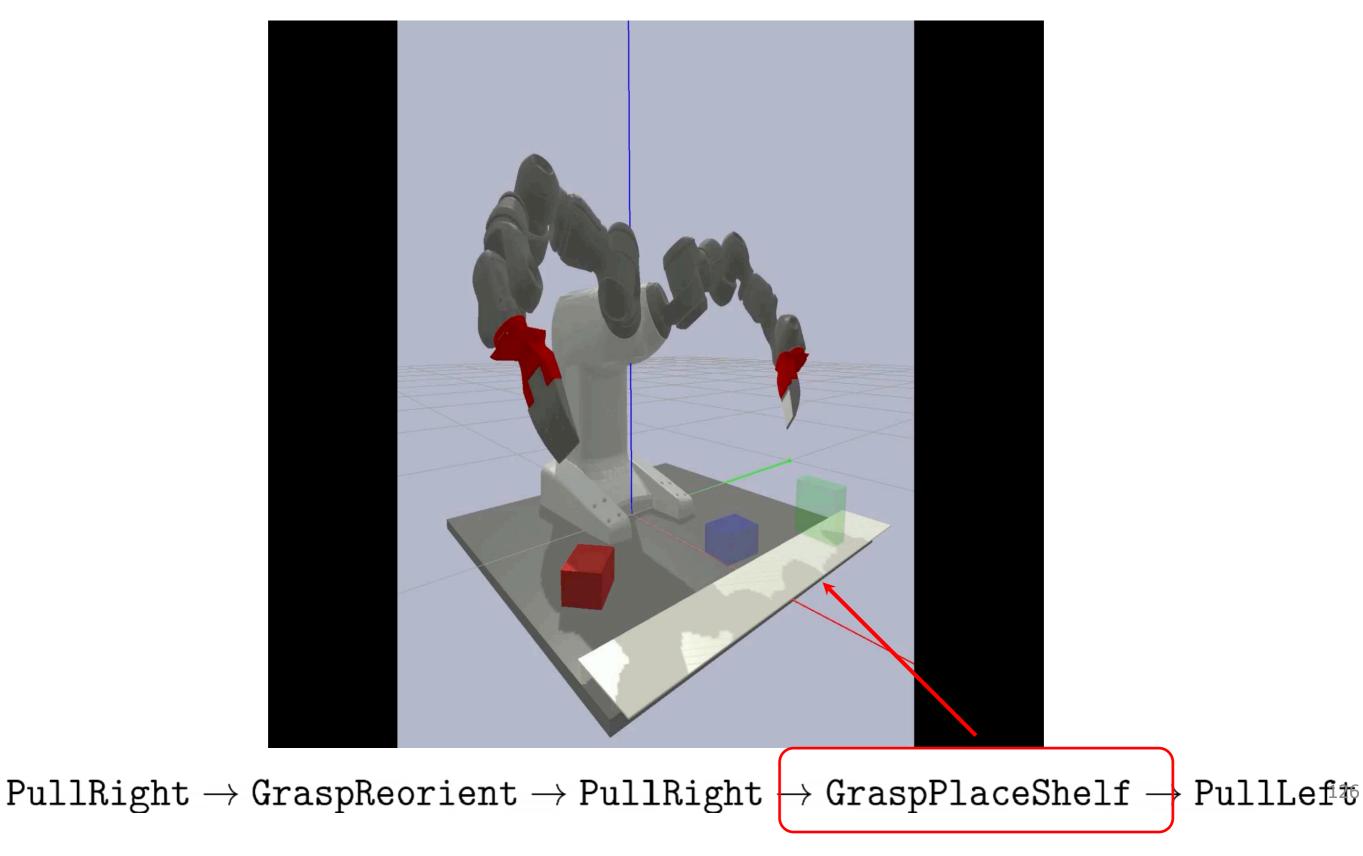
Exploration

Self-Supervised Model Learning

Learning Task-Relevant Models

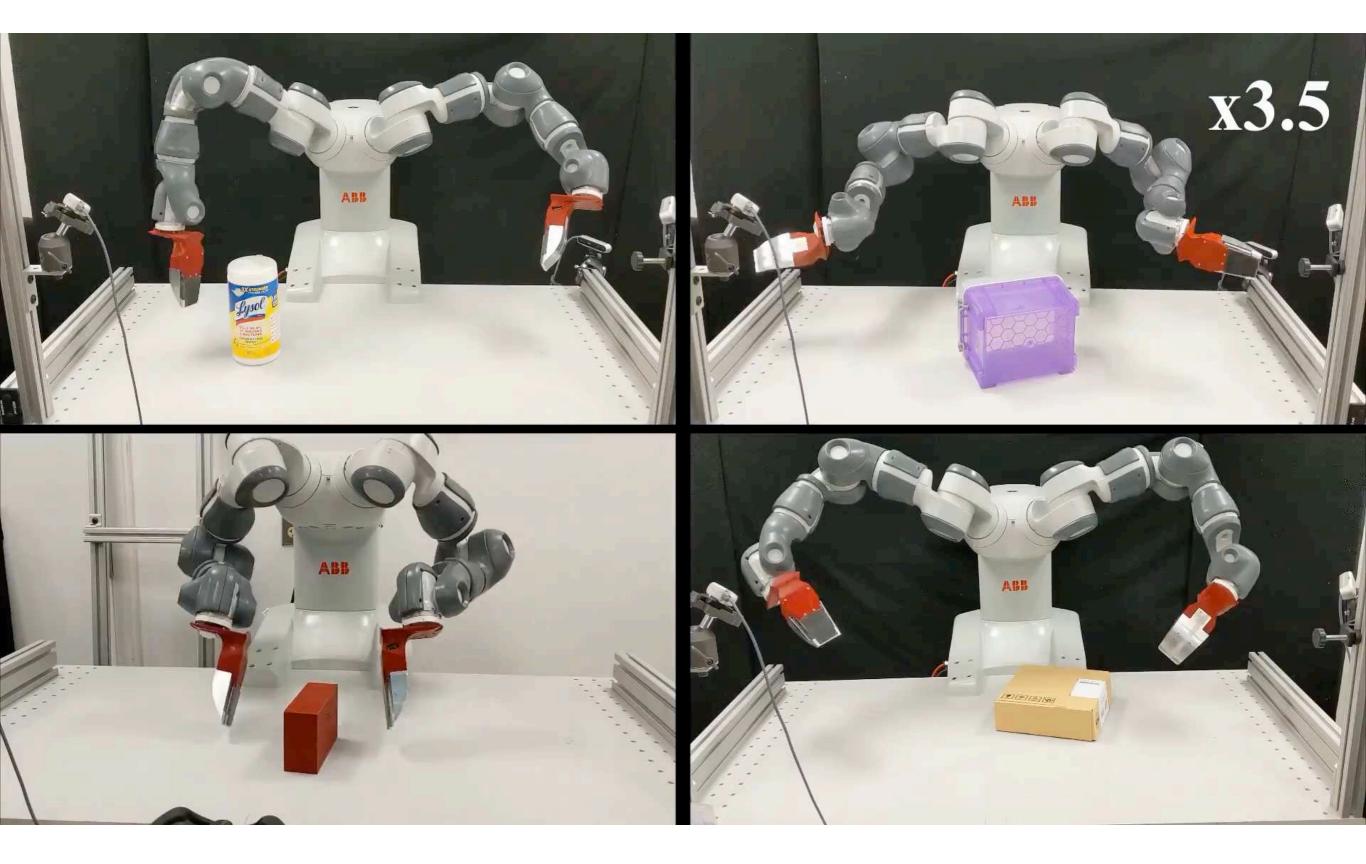
Safer learning from existing data

Using Skills for Long-Term Planning from Visual Sensing



A Long Horizon Planning Framework For Manipulating Rigid Pointcloud Objects, A. Simeonov, Y. Du, B. Kim, F. Hogan, J. Tenenbaum, **P. Agrawal,** A. Rodriguez, CoRL 2020

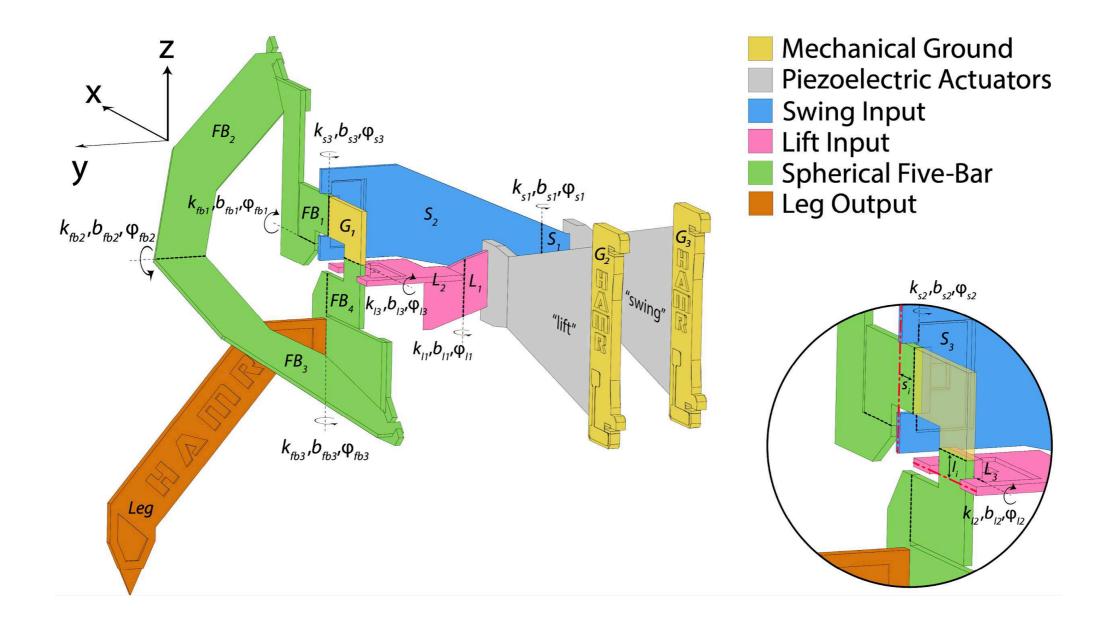
Using Skills for Long-Term Planning from Visual Sensing



A Long Horizon Planning Framework For Manipulating Rigid Pointcloud Objects, A. Simeonov, Y. Du, B. Kim, F. Hogan, J. Tenenbaum, **P. Agrawal,** A. Rodriguez, CoRL 2020 Consider Microrobots

MEET HAMR

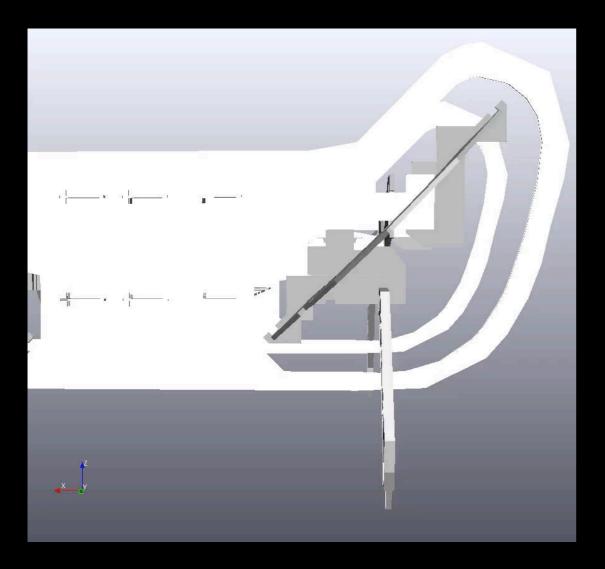
Simulating HAMR is expensive and is inaccurate

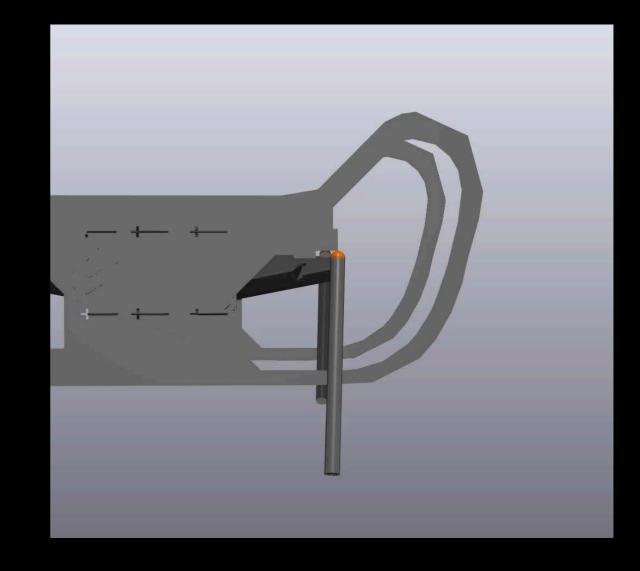


98.96x slower than realtime

Full Model

Simple Model



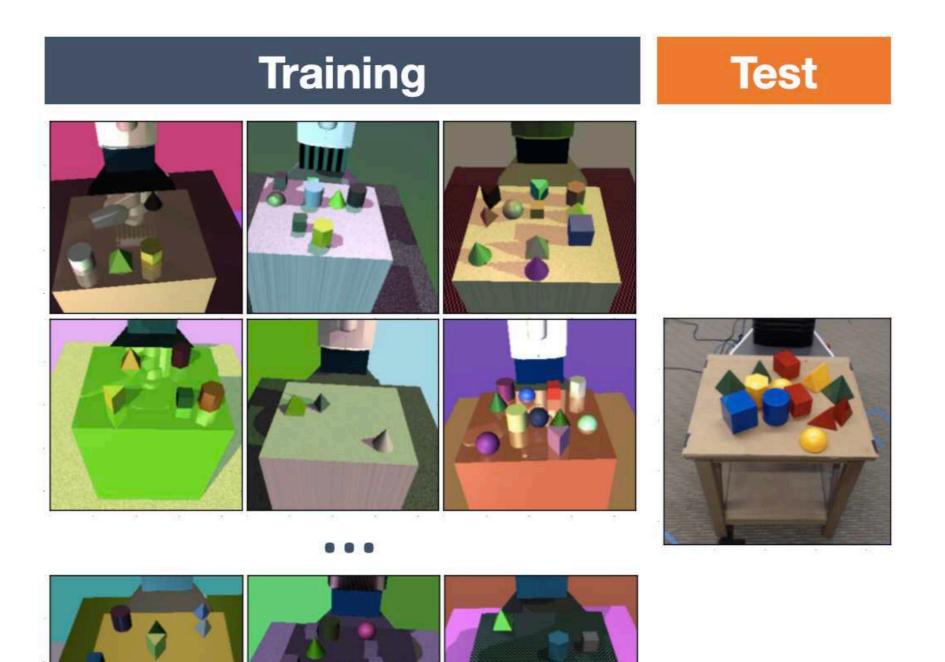


Faster than real-time simulation

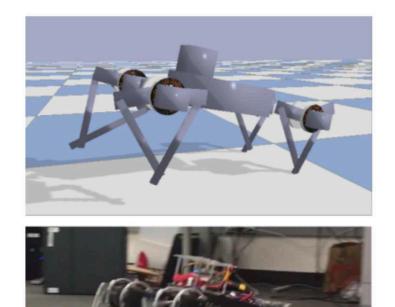
(but not accurate enough for learning to control)

Learn the full model from scratch Domain Randomization

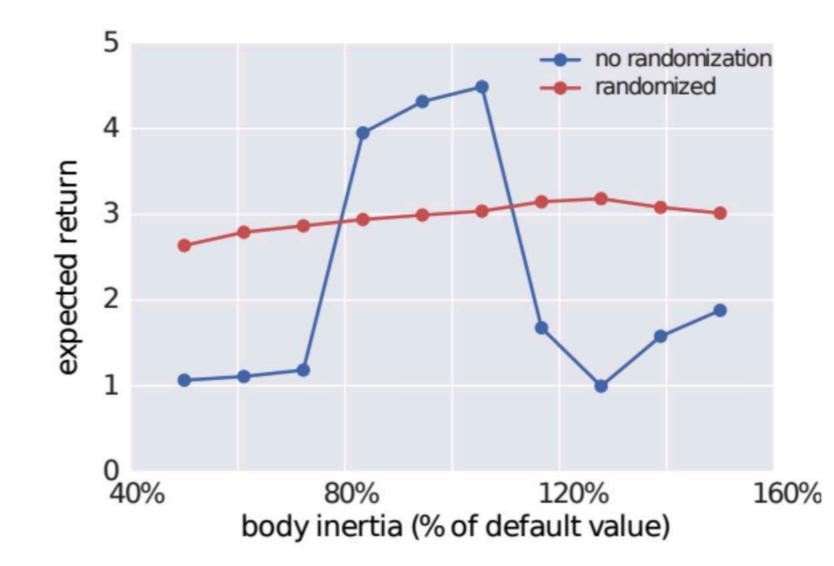
Domain Randomization



Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World, Tobin et al., 2017



Disadvantage of Domain Randomization



Sim-to-Real: Learning Agile Locomotion For Quadruped Robots, Tan et al., 2018

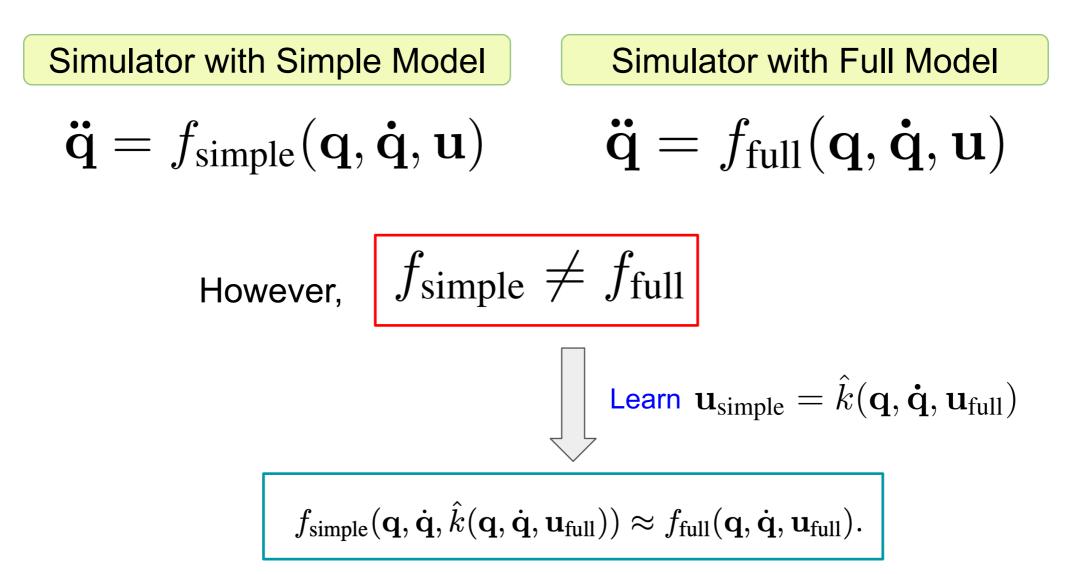
Residual Model Learning

Don't learn more than we need to!

simulators are reasonably good at hard contacts and rigid-body dynamics.

- Use simulator to simulate a bare-minimum simplified model
- Use learning to compensate for the model difference (residual)

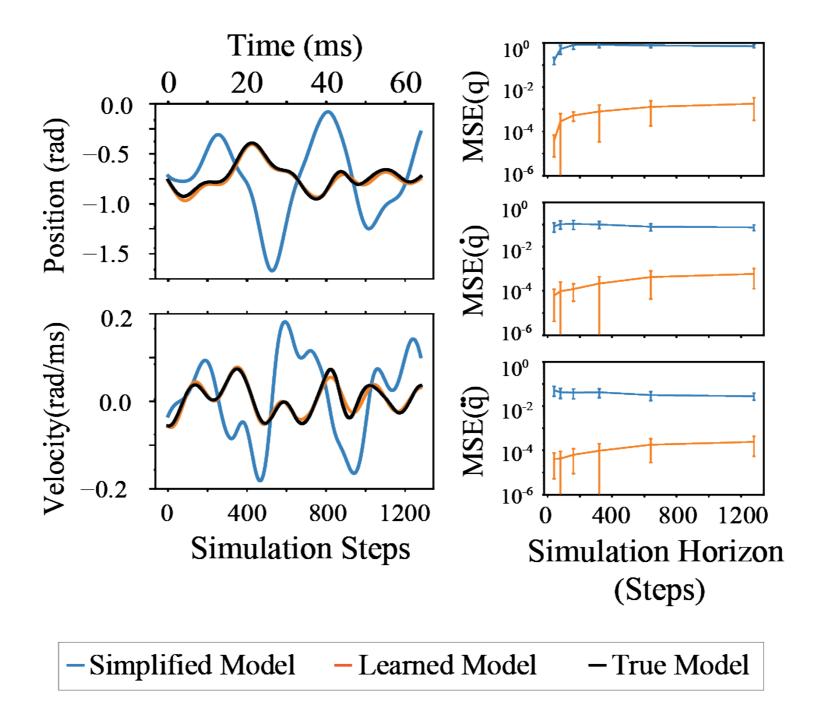
Learning the Residual Model



Key Idea: Learn to modify inputs to simple model, so it matches the full model

Residual Model Learning for Microrobot Control, Gruenstein et al. (in submission)

How well does this perform?



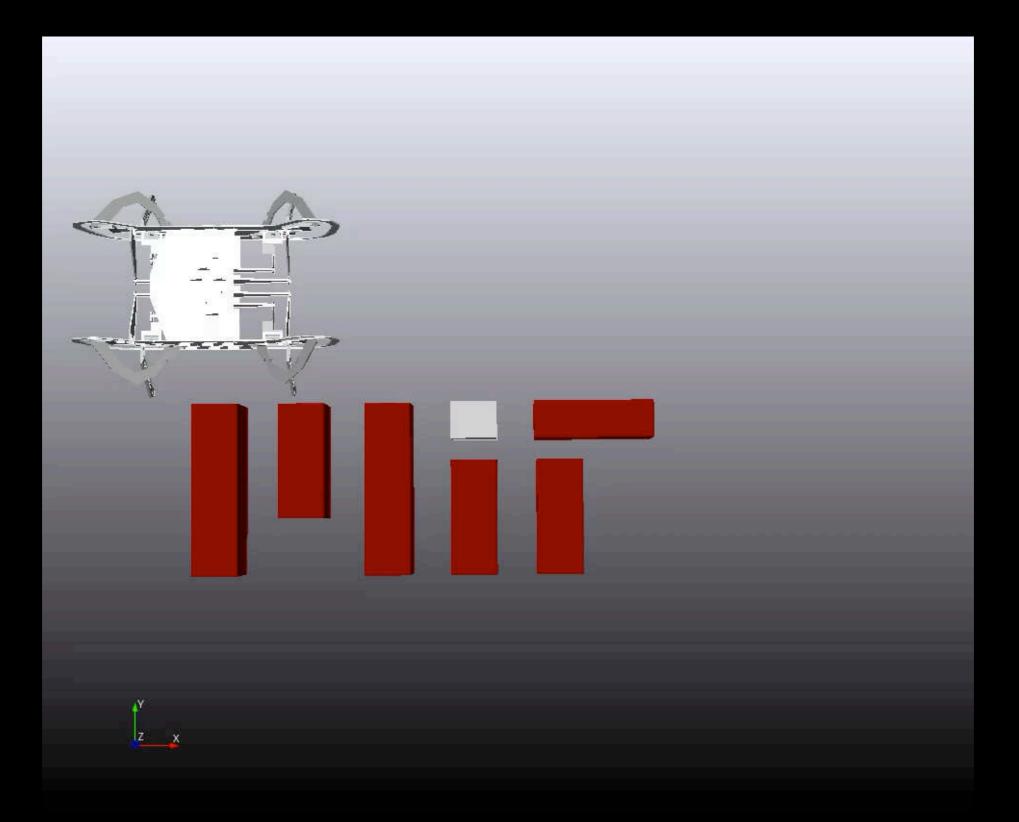
47x faster

Only requires 12 seconds of data

than simulating the full model

Residual Model Learning for Microrobot Control, Gruenstein et al. (in submission)

Residual Model can be used for learning control



Residual Model Learning for Microrobot Control, Gruenstein et al. (in submission)

Issues with Reinforcement Learning

Lots of data

Where do rewards come from?

Task Specific

Demonstrations

Task Curriculum

Exploration

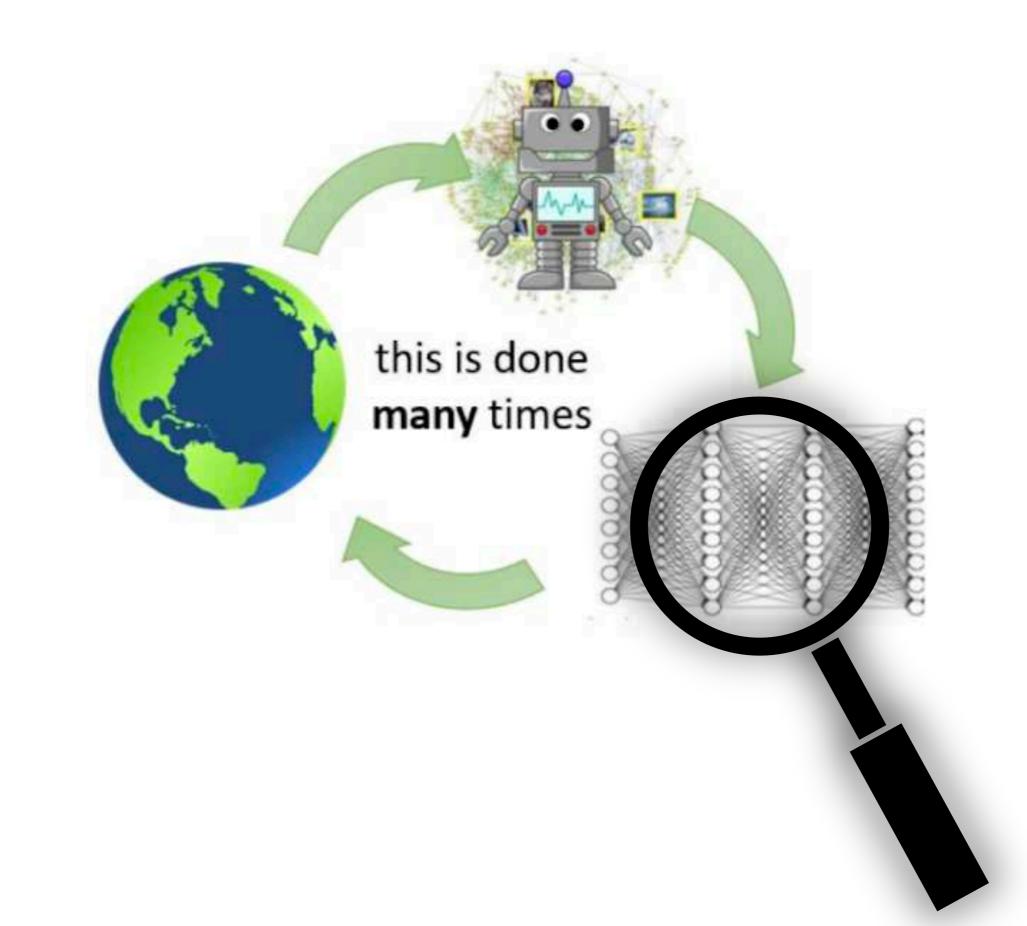
Self-Supervised Model Learning

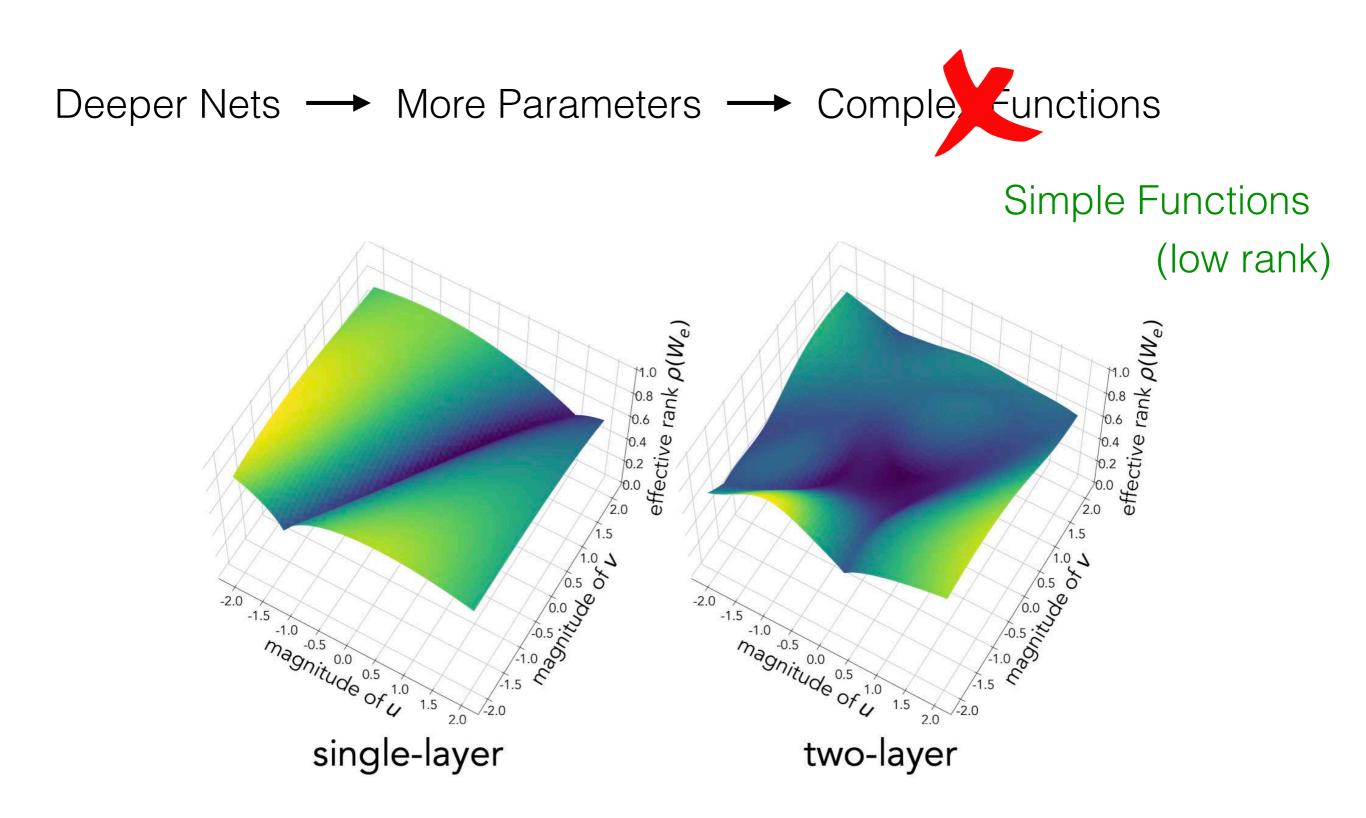
Learning Task-Relevant Models

Efficient Learning In complex systems

Safer learning from existing data

Use Deep Neural Networks as the Workhose

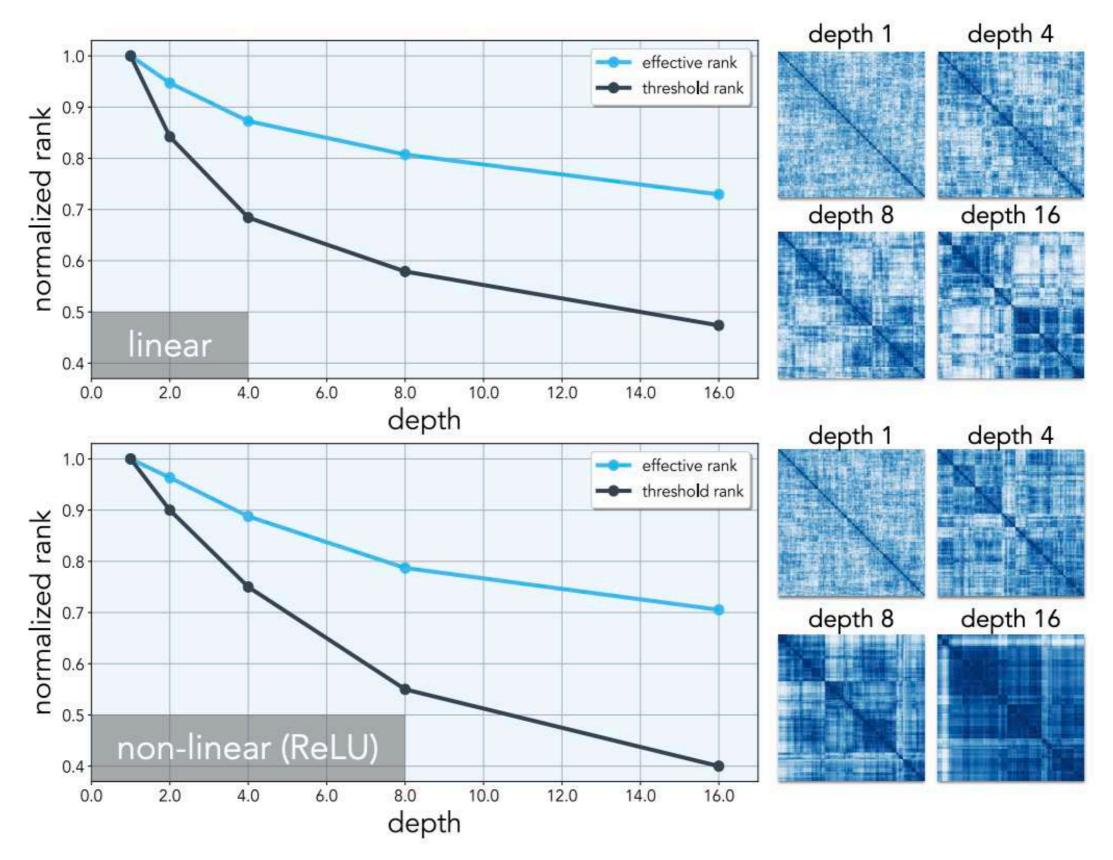




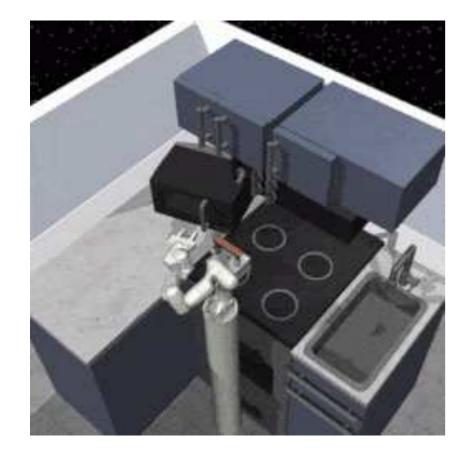
The Low Rank Simplicity Bias in Deep Neural Networks

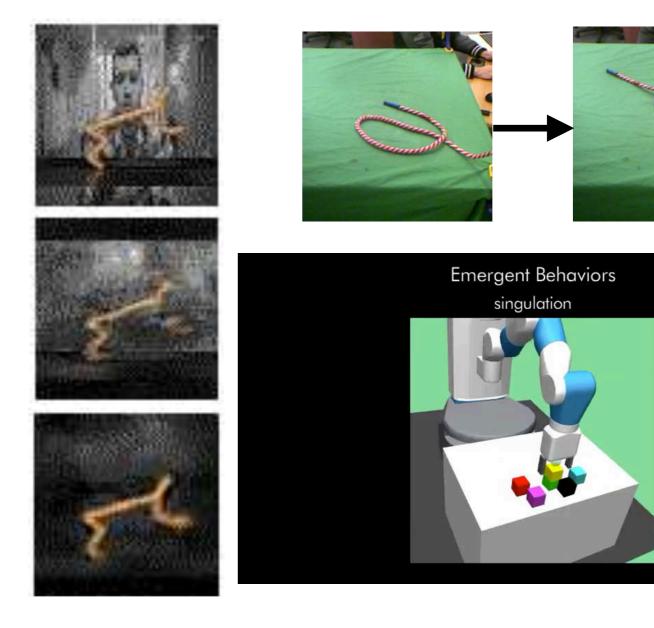
Huh et al. (in submission)

The Low Rank Simplicity Bias in Deep Neural Networks



Huh et al. (in submission)





Questions?